Воздушный автомобиль. Американцы хотят запустить в серию автомобили на воздухе Автомобиль на сжатом воздухе как работает

Резвое распространение бензиново-электрического гибридного привода привело к тому, что сейчас его считают, чуть не единственной кандидатурой автомобилям, снаряженным единственным бензиновым двигателем. Все современные серийные гибридные авто употребляют такие силовые установки в купе с электронными моторами, энергия для которых генерируется методом рекуперации энергии торможения. Результатом таковой практики является значимая экономия горючего и минимизация вредного воздействия на окружающую среду. Платой за эти положительные стороны является существенное повышение себестоимости производства автомобилей с гибридными силовыми установками.

Машина на сжатом воздухе.

Такое положение вещей привело к тому, что многие компании приступили к поиску альтернатив уже сделанным гибридным установкам, более прибыльным и исходя из убеждений эксплуатации, и исходя из убеждений производства. Одним из решений, кажущимся полностью удачным и действенным, было найдено внедрение автомобилей на сжатом воздухе (нужно увидеть, что трамвай, работающий на сжатом воздухе, появился еще в конце девятнадцатого века).

Механизм работы таких установок базируется на том, что рекуперированную энергию торможения подразумевается аккумулировать не в электронную, а в механическую. Аккумуляторные батареи предлагается поменять емкостями для хранения сжатого воздуха, а электронные движки – компрессорными установками.

Вобщем, энергии 1-го только сжатого воздуха для движения автомобиля хватило бы не на длительно. Современные авто на сжатом воздухе не являются такими в незапятанной форме. По собственной сущности – это те же модификации, основной частью которых как и раньше являются движки внутреннего сгорания. Но большим их преимуществом является факт, что не считая бензиновых силовых установок, они не требуют оборудования дополнительными движками (как, например, бензиново-электрические, где требуется электромотор). Авто на воздухе, который сжат энергией торможения, работают на тех же, узнаваемых уже вторую сотку лет, движках внутреннего сгорания. Вот только значительно улучшенными.

Усовершенствование, а точнее модификация ДВС состоит в том, что все установленные в их цилиндры, на горючем работают только по мере надобности довольно большой мощности (очень утрированное, но довольно точно описывающее сущность описание). В остальное же время в цилиндры подается компрессионно сжатый воздух, который и поставляет энергию, заставляющую вертеться маховик.

Работа механизма подачи сжатого воздуха.

Если более тщательно обрисовывать работу автомобилей на сжатом воздухе, то удобнее ассоциировать его работу с обычным бензиновым двигателем. Итак, обычный ДВС имеет в собственном рабочем цикле четыре такта, протекающих в каждом цилиндре:

  • Впуск.
  • Сжатие.
  • Рабочий ход.
  • Выброс.

В пневматических же моторах такты распределены меж парами цилиндров (компрессионных и основных). В компрессионном происходит впуск и предстоящее сжатие воздуха. В основном же, соответственно, рабочий ход и выпуск отработанных газов. Сжатый воздух из компрессионного цилиндра поступает в главный. Для этого устроены особые перепускные клапана и система клапанов.

Самое увлекательное в работе такового мотора, что рабочий ход в нем может осуществляться за счет энергии 2-ух видов: сгорания горючего и расширения сжатого ранее воздуха.

Более принципиально также и то, что два вида энергии, потребляемом движком на сжатом воздухе и горючем, не приводит к умножению на два числа цилиндров, как могло бы показаться вначале. По сути, рабочий ход в основном цилиндре соответствует каждому обороту вала (точно также как и в двухтактном моторе), а не каждому второму обороту, что является отличительной чертой четырехтактного мотора.

Нужно увидеть, что таковой механизм работы пневматических движков был придуман инженером-испытателем Формулы-1 Гаем Негре. Основанная им компания MDI даже запустила в серию некоторое количество видов автомобилей с схожими гибридными силовыми установками. Но в компании не тормознули на достигнутом, и на данный момент запущен в серию и выпускается автомобиль OneCat, где движок Негре работает только на сжатом воздухе.

Не считая того, таковой принцип использования энергии сжатого воздуха для приведения в движение автомобиля является хоть и самым «раскрученным», но далековато не единственным. Еще в конце 80-х годов инженер волжского авто завода Николай Пустынский изобрел и собрал пневмодвигатель, на девяносто 5 процентов похожий с бензиновым двигателем, но работающий только на сжатом воздухе. В авто индустрии изобретение Пустынского внедрения так и не отыскало, но оно было применено для сотворения силовых установок к карам, перевозящим грузы в цехах заводов.

Движок ДиПьетро.

Но самым восхитительным по оригинальности решения и эффективности остается движок австралийского изобретателя Анджело ДиПьетро, разработанный им в 70-х годах двадцатого столетия. Принципно новенькая конструкция мотора ДиПьетро не подразумевает присутствия в нем цилиндров и поршней в их вообщем. В особом корпусе устройства крутится кольцо, опирающееся на особые, закрепленные на валу ролики. По кругу кольца размещены особые камеры, способные изменять собственный объем под воздействием сжатого воздуха и, тем, крутить ротор, передающий движение на колеса.

Движок ДиПьетро легок и конструктивно прост, по этому им можно оснащать авто на сжатом под определенным давлением воздухе. Эффективнее всего устанавливать раздельно такие силовые установки на каждое колесо автомобиля. Не считая того, движок австралийского изобретателя обладает способностью выдавать наибольший вращающий момент даже на самых низких оборотах, что практически автоматом позволяет создавать авто на сжатом в особых емкостях воздухе, не снаряженные коробкой.

Разработанная французской компанией Motor Development International (MDI) машинка под названием AIRPod приводится в движение сжатым воздухом. Хотя выпускается она с 2009 года, долгое время она вызывала у всех (за исключением разве что фанатов-экологов) лишь снисходительную улыбку. Действительно, первоначально она могла эксплуатироваться лишь в теплом климате: разработанный в начале 1990-х годов пневматически-пропеллерный двигатель не запускался при низких температурах. И хотя сегодня уже разработана система подогрева сжатого воздуха, расширяющая географию применения AIRPod, приобрести его можно только на Гавайях (штат США).

Дорожное шоу

Весной 2015 года независимая компания ZPM (Zero Pollution Motor – «Двигатели с нулевым загрязнением») провела в прайм-тайм американского телеканала ABC публичное road-show – презентацию с целью привлечения инвесторов (дословно переводится на русский как «дорожное шоу»). ZPM выкупила у французов право на производство и продажу новой модели AIRPod – пока лишь на Гавайях, выбранных в качестве «стартового рынка».

Презентовали проект завода по производству экологически чистых автомобилей два акционера ZPM – известный американский певец Пэт Бун (пик его карьеры пришелся на 1950-е годы) и кинопродюсер Эйтан Такер («Шрек», «Семь лет в Тибете» и др.). Они предлагали потенциальным инвесторам (т. н. «бизнес-ангелам») 50% акций ZPM за 5 млн долларов.


Инвесторы раскошеливаться не спешили. При этом считавшийся наиболее перспективным из них Роберт Херьявец, владелец и основатель канадской IT-компании Herjavec Group, заявил, что ему интересны продажи AIRPod не в одном отдельно взятом штате, а на территории всех США. Так что в настоящее время руководство ZPM ведет переговоры с французами о расширении территории продаж.

Приводные устройства >

Пневматические двигатели (пневмодвигатели)

Пневмодвигатели, они же пневмомоторы - это устройства, преобразующие энергию сжатого воздуха в механическую работу. В широком смысле слова, механическую работу пневматического двигателя понимают как линейное или ротационное движение - однако, все же, пневмодвигатели, создающие линейное возвратно-поступательное движение, чаще называют пневмоцилиндрами, а понятие «пневматического двигателя» обычно ассоциируется с ротацией вала. В свою очередь, ротационные пневмодвигатели подразделяются, по принципу своей работы, на лопаточные (они же пластинчатые) и поршневые - компания Parker производит оба типа.

Мы думаем, что многие посетители нашего сайта не хуже нас знакомы с тем, что такое пневмодвигатель, какие они бывают, как их подбирать и прочими связанными с этими устройствами вопросами. Таким посетителям, наверное, хотелось бы сразу перейти к технической информации о предлагаемых нами пневматических двигателях:


  • Серия P1V-P: радиальные поршневые, 74...228 Вт
  • Серия P1V-M: пластинчатые, 200...600 Вт
  • Серия P1V-S: пластинчатые, 20...1200 Вт, нержавеющая сталь
  • Серия P1V-A: пластинчатые, 1,6...3,6 кВт
  • Серия P1V-B: пластинчатые, 5,1...18 кВт

Для не столь хорошо знакомых с пневмомоторами наших посетителей, мы подготовили по ним некоторую основную информацию справочного и теоретического характера, которая, как мы надеемся, может оказаться кому-нибудь полезной:

Пневмомоторы существуют уже в течение примерно двух веков, и в наши дни довольно широко используются в промышленном оборудовании, ручном инструменте, в авиации (в качестве стартеров) и в некоторых других областях.

Существуют также и примеры применения пневматических моторов в конструкции автомобилей, работающих на сжатом воздухе - сначала еще на заре автомобилестроения в XIX веке, и позднее, в ходе нового интереса к «ненефтяным» автомобильным двигателям начиная с 80х годов XX века - однако, к сожалению, последний тип применения пока представляется малоперспективным.

Основными «конкурентами» пневмодвигателей являются электрические двигатели, которые претендуют на применение в тех же областях, что и пневматические двигатели. Можно отметить следующие общие преимущества пневматических двигателей перед электрическими:
- пневмотор занимает меньше места, чем соответствующий ему по основным параметрам электродвигатель
- пневмомотор обычно в несколько раз легче соответствующего электромотора
- пневмодвигатели без проблем выдерживают высокую температуру, сильную вибрацию, удары и другие внешние воздействия
- большинство пневмомоторов полностью пригодны для использования во взрывоопасных местах установки и сертифицированы по ATEX
- пневмодвигатели значительно более, чем электромоторы, толерантны к пускам/остановкам
- обслуживание пневматических моторов проводить значительно проще, чем электрических
- пневмодвигатели стандартно имеют возможность обратного хода
- пневмодвигатели, в целом, занчительно надежнее электродвигателей - благодаря простоте конструкции и малому количеству движущихся частей

Разумеется, несмотря на эти преимущества, сплошь и рядом, все же, применение электродвигателей оказывается более эффективным как с технической, так и с экономической точек зрения; однако там, где все же используется пневмопривод, это объясняется обычно одним или более из вышеперечисленных его преимуществ.

Принцип работы и устройства пластинчатого пневмодвигателя


Принцип работы пластинчатого пневмодвигателя
1 - корпус ротора (цилиндр)
2 - ротор
3 - лопатки
4 - пружина (толкает лопатки)
5 - торцевой фланец с подшипниками

Мы предлагаем пневмодвигатели двух типов: поршневые и пластинчатые (они же лопаточные); при этом, последние являются более простыми, надежными, совершенными и, как следствие, распространенными. Кроме того, они обычно и меньше поршневых пневмомоторов, что облегчает их установку в компактные корпуса использующих их устройств. Принцип работы пластинчатого электродвигателя практически обратен принципу работы пластинчатого компрессора: в компрессоре, подача вращения (от электродвигателя или двиигателя внутреннего сгорания) на вал вызывает вращение ротора с выезжающими из его пазов лопатками, и, таким образом, сокращение камер сжатия; в пневматическом двигателе, сжатый воздух подается на лопатки, что вызывает вращение ротора - то есть, энергия сжатого воздуха преобразуется в пневмодвигателе в механическую работу (вращательное движение вала).

Лопаточный пневмодвигатель состоит из цилиндра-корпуса, в котором на подшипниках размещен ротор - причем, размещен не прямо по центру полости, а со смещением относительно последнего. По всей длине ротора прорезаны пазы, в которые вставлены изготовленные из графита или иного материала лопатки. Лопатки выталикаются из пазов ротора действием пружин, прижимаясь к стенкам корпуса и образуя между своей, корпуса и ротора поверхностями полость - рабочую камеру.

Сжатый воздух подается на вход рабочей камеры (подавать его можно с обеих сторон) и толкает лопатки ротора, что, в свою очередь, вызывает вращение последнего. Сжатый воздух проходит в полости между платинками и поверхностями корпуса и ротора до выходного отверстия, через которое и выбрасывается в атмосферу. В пластинчатых пневмодвигателях, вращающий момент определяется площадью поверхности лопаток, подвергающейся давлению воздуха, и уровнем этого давления.


Как подобрать пневматический двигатель?

n скорость
M крутящий момент
P мощность
Q потребление СжВ


Возможный режим работы
Оптимальный режим работы
Высокий износ (не всегда)

Для каждого пневматического двигателя, можно нарисовать график, показывающий зависимость крутящего момента M и мощности P, а также потребления сжатого воздуха Q, от скорости вращения n (пример размещен на рисунке справа).

Если двигатель простаивает или вращается в свободном режиме без нагрузки на выходном валу, он не развивает никакой мощности. Обычно, максимальная мощность развивается при торможении двигателя примерно до половины его максимальной скорости вращения.

Что касается крутящего момента, то в режиме свободного вращения он тоже равен нулю. Сразу же после начала торможения двигателя (при появлении нагрузки), крутящий момент начинает линейно расти до тех пор, пока двигатель не встанет. Однако, нельзя указать точное значение стартового крутящего момента - по той причине, что лопасти (или поршни у поршневого пневмодвигателя) могут при его полной остановке находиться в разных положениях; указывают всегда только минимальный стартовый крутящий момент.

При этом следует отметить, что неправильный подбор пневматического двигателя чреват не только неэффективностью его работы, но и бóльшим его износом: на высоких скоростях, быстрее изнашиваются лопатки; на низких скоростях при высоком крутящем моменте, быстрее изнашиваются части трансмиссии.

Обычный подбор: нужно знать крутящий момент M и скорость n

При обычном подходе к подбору пневмодвигателя, начинают с установления вращающего момента при какой-либо определенной требуемой скорости. Другими словами, для подбора двигателя нужно знать требующиеся вращающий момент и скорость. Так как, как мы отметили выше, максимальная мощность развивается примерно при ½ максимальной (свободной) скорости пневмомотора, то, в идеале, следует выбирать пневмодвигатель, который показывает требуемую скорость и крутящий момент при значении мощности, близком к максимальному. Для каждого агрегата имеются соответствующие графики, позволяющие определить его пригодность для конкретного использования.

Небольшая подсказка: в общем случае, можно выбрать пневматический мотор, который при максимальной мощности обеспечивает слегка бóльшие, чем требуется, скорость и крутящий момент, а затем отрегулировать их путем регулирования давления редуктором-регулятором и/или расхода сжатого воздуха с помощью ограничителя потока.

Если момент силы M и скорость n не известны

В некоторых случаях, вращающий момент и скорость не известны, но известны требуемая скорость движения груза, момент рычага (радиус-вектор, или, проще говоря, расстояние от центра приложения силы) и потребляемая мощность. Исходя из этих параметров, можно рассчитать вращающий момент и скорость:

Сначала, хотя эта формула и не поможет напрямую в расчете требуемых параметров, уточним, что является мощностью (она же в случае пневмодвигателей - вращающая сила). Итак, мощность (сила) является произведением массы на ускорение свободного падения:

Где
F - искомая мощность [Н] (помним, что ),
m - масса [кг],
g - ускорение свободного падения [м/с²], в Москве ≈ 9,8154 м/c²

Например, на иллюстрации справа к барабану, зарепленному на выходном валу пневмодвигателя, подвешен груз массой 150 кг. Происходит дело на Земле, в городе Москва, и ускорение свободного падения составляет примерно 9,8154 м/с². В этом случае, сила составляет примерно 1472 кг·м/c², или 1472 Н. Еще раз повторимся, что эта формула не имеет прямого отношения к предлагаемым нами методам подбора пневмодвигателей.

Вращающий момент, он же момент силы, это сила, прилагаемая для придания объекту вращения. Момент силы является произведением вращающей силы (рассчитанной по формуле выше) и расстояния от центра до точки ее приложения (момент рычага, или, проще говоря, расстояние от центра вала пневмодвигателя до, в данном случае, поверхности закрепленного на валу барабана). Рассчитываем момент силы (он же вращающий, он же крутящий момент):

Где
M - искомый момент силы (вращающий момент) [Н·м],
m - масса [кг],
g - ускорение свободного падения [м/с²], в Москве ≈ 9,8154 м/c²
r - момент рычага (радиус от центра) [м]

Например, если диаметр вала+барабана составляет 300 мм = 0,3 м, и, соответственно, момент рычага = 0,15 м, то вращающий момент составит примерно 221 Н·м. Вращающий момент - это один из необходимых параметром для подбора пневмодвигателя. По формуле выше его можно рассчитать, исходя из знания массы и момента рычага (в подавляющем большинстве случаев различиями в ускорении свободного падения можно пренебречь из-за редкости применения пневматических двигателей в космосе).

Скорость вращения ротора пневматического двигателя можно рассчитать, зная скорость поступательного движения нагрузки и момент рычага:

Где
n - искомая скорость вращения [мин -1 ],
v - скорость поступательного движения нагрузки [м/с],
r - момент рычага (радиус от центра) [м],
π - константа 3,14
Поправочный коэффициент 60 введен в формулу для того, чтобы перевести обороты в секунды в более удобные для восприятия и более широко распространенные в технической документации обороты в минуту.

Например, при поступательной скорости 1,5 м/с и предложенном и в предидущем примере моменте рычага (радиусе) 0,15 м, требуемая скорость вращения вала составит примерно 96 об/мин. Скорость вращения является еще одним нужным для подбора пневматического мотора параметром. По формуле выше ее можно рассчитать, зная момент рычага и скорость поступательного движения нагрузки.

Где
P - требуемая мощность [кВт] (помним, что ),
M - момент силы, он же крутящий момент [Н·м],
n - скорость вращения [мин -1 ],
9550 - константа (равна 30/π для преобразования скорости из радиан/с в обороты/мин, с умножением на 1000 для преобразования ватт в более удобные для восприятия и более распространенные в технической документации киловатты)

Например, если крутящий момент составляет 221 Н·м при скорости вращения 96 мин -1 , то требуемая мощность составит примерно 2,2 кВт. Разумеется, из этой формулы можно вывести и обратные: для вычисления вращающего момента или скорости вращения вала пневматического мотора.

Типы трансмиссии (редуктора)

Как правило, вал пневмодвигателя соединяется с реципиентом вращения не напрямую, а через интегрированную в конструкцию пневмодвигателя трансмиссию-редуктор. Редукторы бывают разных типов, основными из которых являются планетарные, геликоидальные и червячные.


Планетарный редуктор

Планетарные редукторы характеризуются высоким КПД, низким инерционным моментом, возможностью создания высоких передаточных чисел, а также небольшими, по отношению к создаваемому крутящему моменту, габаритами. Выходной вал всегда находится в центре корпуса планетарной передачи. Части планетарного редуктора смазываются смазкой, что означает, что пневмомотор с таким редуктором можно установить в любом желаемом положении.
+ небольшие установочные размеры
+ свобода при выборе положения установки
+ простое фланцевое соединение
+ небольшая масса
+ выходной вал находится в центре
+ высокая эффективность работы




Геликоидальный редуктор

Геликоидальные трансмиссии также отличаются высокой эффективностью. Несколько ступеней редуцирования позволяют достичь высоких передаточных чисел. Удобству и гибкости в установке способствует центральное расположение выходного вала и возможность установки пневматического двигателя с геликоидальным редуктором как на фланец, так и на стойках.

Однако, подобные редукторы смазываются разбрызгиванием масла (имеется своего рода «масляная ванна», в которую всегда должны быть частично погружены движущиеся части редуктора), и, поэтому, положение пневматического двигателя с подобной передачей должно быть определено заранее - с учетом этого, будет определен и надлежащий объем масла, который должен быть залит в трансмиссию, и положение заливных и сливных штуцеров.
+ высокая эффективность
+ простая установка через фланец или стойки
+ относительно низкая цена
- необходимость заранее планировать установочное положение
- более высокая, чем у планетарных или червячных редукторов, масса




Червячный редуктор

Червячные передачи отличаются относительно простой конструкцией, на основе шнека и шестерни, благодаря чему с помощью такого редуктора можно получить высокие передаточные числа при малых габаритных размерах. Однако, эффективность червячной передачи значительно ниже, чем планетарной или геликоидальной.

Выходной вал направлен под углом 90° по отношению к валу пневмодвигателя. Установка пневмодвигателя с червячной передачей возможна как через фланец, так и на стойках. Однако, как и в случае с геликоидальными передачами, она несколько осложняется тем, что червячные редукторы, как и геликоидальные, тоже используют смазку разбрызгиванием масла - поэтому, установочное положение таких систем тоже нужно знать заранее, т.к. оно повлияет на объем заливаемого в редуктор масла, а также на положение заливных и дренажных присоединений.
+ низкая, по отношению к передаточному числу, масса
+ относительно низкая цена
- относительно низкий КПД
- необходимо заранее знать установочное положение
+/- выходной вал находится под углом 90° к валу пневмомотора


Методы регулировки пневмодвигателей

В таблице ниже показаны два основных способа регулирования работы пневматических двигателей:

Регулирование расхода

Основным методом регулирования работы пневмодвигателей является установка на входе одноходового двигателя регулятора расхода сжатого воздуха (ограничителя потока). В тех случаях, когда предполагается реверс двигателя, и нужно ограничить его скорость в обоих направлениях, регуляторы с байпасными линиями следует установить на обеих сторонах пневмодвигателя.


Ограничение подачи или выхода на 1-ходовом моторе


Ограничение подачи на моторе с обратным ходом


Ограничение выхода на моторе с обратным ходом

При регулировании (ограничении) подачи в пневмодвигатель сжатого воздуха, при сохранении его давления, свободная скорость вращения ротора пневматического двигателя падает - при сохранении, однако, полного давления сжатого воздуха на поверхность лопастей. Кривая изменения крутящего момента становится более крутой:


Кривая крутящего момента

Это значит, что на низких скоростях вращения от пневмодвигателя возможно получить полный крутящий момент. Однако, это также означает, что при равной скорости вращения, мотор развивает меньший крутящий момент, чем он развил бы при подаче полного объема сжатого воздуха.

Регулирование давления

Скорость и вращающий момент пневмомотора можно также регулировать путем изменения давления поступающего на него сжатого воздуха. Для этого, на входном трубопроводе устанавливают редуктор-регулятор давления. В результате, мотор постоянно получает неограниченный объем сжатого воздуха, но при меньшим давлении. При этом, при появлении нагрузки, он развивает на выходном валу меньший крутящий момент.


Регулирование давления


Регулирование давления

Уменьшение входного давления сжатого воздуха снижает крутящий момент, создаваемый мотором при торможении (появлении нагрузки), но также и снижает скорость.

Контроль работы и направления вращения

Пневматический двигатель работает, когда в него подается, и когда из него выходит, сжатый воздух. Если требуется обеспечить вращение вала пневмодвигателя только в одном направлении, то подача сжатого воздуха должна быть предусмотрена только на один из пневмовходов агрегата; соответственно, если нужно, чтобы вал пневмодвигателя вращался в двух направлениях, то нужно предусмотреть чередование подачи сжатого воздуха между обоими входами.

Подача и отвод сжатого воздуха осуществляется с помощью контрольных клапанов. Они могут быть разными по способу активации: наиболее распространены клапаны с электрическим управлением (электромагнитные, они же соленоидные, открытие или закрытие которых производится путем подачи напряжения на индукционную катушку, втягивающую в себя поршень), с пневматическим управлением (когда сигнал на открытие или закрытие подается путем подачи сжатого воздуха), механические (когда открытие или закрытие вызывается механически, путем автоматического нажатия на некую кнопку или рычаг) и ручные (сходные с механическими, за исключением того, что открытие или закрытие клапана производится непосредственно человеком).

Самый простой случай мы видим, конечно, у односторонних пневмомоторов: для них, нужно обеспечить только подачу сжатого воздуха на один из входов. Контролировать каким-либо образом выход сжатого воздуха из другого пневматического присоединения пневмомотора нет необходимости. В этом случае, достаточно установки на входе сжатого воздуха в пневмодвигатель 2/2-ходового соленоидного клапана, или иного 2/2-ходового клапана (напомним, что конструкция «X/Y-ходовой клапан» означает, что у этого клапана имеется X портов, через которые может производится подача или отвод рабочей среды, и Y положений, в которых может находиться рабочая часть клапана). На рисунке справа, правда, показано использование 3/2-ходового клапана (еще раз повторим, что в случае с одноходовыми пневматическими моторами не принципиально, какой клапан использовать - 2/2-ходовой или 3/2-ходовой). Вообще, на рисунке справа последовательно, слева направо, схематично показаны следующие устройства: отсечной кран, фильтр сжатого воздуха, регулятор давления, 3/2-ходовой клапан, регулятор расхода, пневмодвигатель.

В случае с двухсторонними двигателями, задача незначительно усложняется. Первым вариантом является использование одного 5/3-ходового клапана - такой клапан будет иметь 3 положения (остановка, передний ход, реверс) и 5 портов (один для входа сжатого воздуха, по одному на подачу сжатого воздуха на каждый из двух пневмоприсоединений пневмодвигателя, и еще по одному для отвода сжатого воздуха от каждого из этих же двух присоединений). Конечно, такой клапан будет иметь и не менее двух актуаторов - в случае, например, с соленоидным клапаном, это будут 2 индукционные катушки. На рисунке справа показаны последовательно, слева направо: 5/3-ходовой клапан, регулятор расхода со встроенным обратным клапаном (чтобы сжатый воздух мог выйти), пневмодвигатель, еще один регулятор расхода с обратным клапаном.

Альтернативным вариантом управления двухходовым пневмомотором является использование двух раздельных 3/2-ходовых клапанов. Принципиально такая схема не отличается от описанного в предыдущем абзаце варианта с 5/3-ходовым клапаном. На рисунке справа последовательно, слева направо, показаны: 3/2-ходовой клапан, регулятор расхода со встроенным обратным клапаном, пневмодвигатель, еще один регулятор расхода со встроенным обратным клапаном, и еще один 3/2-ходовой клапан.

Глушение шума

Шум, создаваемый пневмодвигателем при работе, складывается из механического шума от движущихся частей и из шума, создаваемого пульсацией сжатого воздуха, выходящего из двигателя. Влияние шума от пневмодвигателя может довольно заметно сказываться на общем шумовом фоне в месте установки - если, например, позволить сжатому воздуху свободно выходить из пневмомотора в атмосферу, то уровень звукового давления может доходить, в зависимости от конкретного агрегата, до 100-110 дБ(А) и даже больше.

Во-первых, нужно стараться, по возможности, избегать создания эффекта механического резонанса звука. Но даже в наилучших условиях, шум может все равно быть очень заметным и некомфортным. Для устранения шума, следует использовать фильтры-глушители - несложные устройства, специально предназначенные для этой цели и рассеивающие в своем корпусе и фильтрующем материале поток сжатого воздуха.


По материалу конструкции, глушители подразделаются на изготовленные из синтерированной (то есть превращенной в порошок, и затем сформованной/спеченной при высоком давлении и температуре) бронзы, меди или нержавеющей стали, синтерированных же пластиков, а также на сделанные из сплетенной проволоки, заключенной в сетчатый стальной или алюминиевый корпус, и сделанные на основе других фильтрующих материалов. Первые два типа обычно бывают небольшими как по пропускной способности, так и по размеру, и недорогими. Такие глушители обычно ставят на сам пневмодвигатель или около него. Примером их могут служить, среди прочих, .

Глушители из проволочной сетки могут иметь очень большую пропускную способность (даже на порядки превышающую потребность в сжатом воздухе самого большого пневматического мотора), большой диаметр присоединения (из предлагаемых нами, до резьбы 2"). Проволочные глушители, как правило, загрязняются значительно медленнее, могут быть эффективно и многократно регенированы - но, к сожалению, и стоят они обычно значительно дороже синтерированных бронзовых или пластиковых.

Что касается размещения глушителей, то существует два основных варианта. Самым простым способом является навинтить глушитель непосредственно на пневмомотор (при необходимости, через переходник). Однако, во-первых, сжатый воздух на выходе пневмодвигателя обычно подвержен довольно сильным пульсациям, которые как уменьшают эффективность глушителя, так и, потенциально, снижают его срок службы. Во-вторых, глушитель не убирает шум совсем, а лишь снижает его - и при размещении глушителя на агрегате, шума, скорее всего, будет все равно довольно много. Поэтому, по возможности и при желании, для максимального снижения уровня звукового давления следует предпринять, выборочно или в совокупности, следующие меры: 1) установить между пневматическим мотором и глушителем некую раширительную камеру, снижающую пульсацию сжатого воздуха, 2) присоединить глушетиль через мягкий гибкий шланг, служащий для той же цели, и 3) вывести глушитель туда, где шум не будет никому мешать.

Следует также помнить, что изначально недостаточная пропускная способность глушителя (из-за ошибки в подборе) или его возникшая в ходе эксплуатации (частичная) блокировка от загрязенения могут привести к значительному сопротивлению, оказываемому глушителем потоку выходящего сжатого воздуха - что, в свою очередь, приводит к снижению мощности пневмодвигателя. Выбирайте (в том числе консультируясь с нами) достаточный по пропускной способности глушитель и затем, при его эксплуатации, следите за его состоянием!

Несколько лет назад мир облетела новость о том, что индийская компания Tata собирается запустить в серию автомобиль, работающий на сжатом воздухе. Планы так и остались планами, но пневматические автомобили явно стали трендом: каждый год появляется несколько вполне жизнеспособных проектов, а компания Peugeot в 2016 году планировала поставить на конвейер воздушный гибрид. Почему же пневмокары внезапно вошли в моду?

Все новое — это хорошо забытое старое. Так, электромобили в конце XIX века были популярнее бензиновых собратьев, затем они пережили столетнее забвение, а потом снова «восстали из пепла». То же касается и пневмотехники. Еще в 1879 году французский пионер авиации Виктор Татен спроектировал самолет A? roplane, который должен был подниматься в воздух благодаря двигателю на сжатом воздухе. Модель этой машины успешно летала, хотя в полном размере самолет построен не был.

Родоначальником пневмодвигателей на наземном транспорте стал другой француз, Луи Мекарски, разработавший подобный силовой агрегат для парижских и нантских трамваев. В Нанте машины испытали в конце 1870-х, а к 1900 году Мекарски владел парком из 96 трамваев, что доказывало эффективность системы. Впоследствии пневматический «флот» был заменен электрическим, но начало было положено. Позднее пневмолокомотивы нашли себе узкую сферу повсеместного применения — шахтное дело. В то же время начались и попытки поставить воздушный двигатель на автомобиль. Но до начала XXI века эти попытки оставались единичными и не стоящими внимания.


Плюсы: отсутствие вредных выбросов, возможность заправки автомобиля в домашних условиях, невысокая стоимость ввиду простоты конструкции двигателя, возможность применения рекуператора энергии (например, сжатия и накопления дополнительного воздуха за счет торможения автомобиля). Минусы: низкие КПД (5−7%) и плотность энергии; необходимость во внешнем теплообменнике, поскольку при уменьшении давления воздуха двигатель сильно переохлаждается; низкие эксплуатационные показатели пневмоавтомобилей.

Преимущества воздуха

Пневматический двигатель (или, как говорят, пневмоцилиндр) преобразует энергию расширяющегося воздуха в механическую работу. По принципу действия он аналогичен гидравлическому. «Сердце» пневмодвигателя — поршень, к которому прикреплен шток; вокруг штока навита пружина. Воздух, поступающий в камеру, с увеличением давления преодолевает сопротивление пружины и перемещает поршень. На фазе выпуска, когда давление воздуха падает, пружина возвращает поршень в исходное положение — и цикл повторяется. Пневмоцилиндр вполне можно назвать «двигателем внутреннего несгорания».

Более распространена мембранная схема, где роль цилиндра выполняет гибкая мембрана, к которой точно так же прикреплен шток с пружиной. Ее преимущество заключается в том, что не нужна столь высокая точность посадки подвижных элементов, не требуются смазочные материалы, а герметичность рабочей камеры повышается. Существуют также роторные (пластинчатые) пневмодвигатели — аналоги ДВС Ванкеля.


Крошечный трехместный пневмоавтомобиль французской MDI был представлен широкой публике на Женевском автосалоне 2009 года. Он имеет право передвигаться по выделенным велодорожкам и не требует наличия водительских прав. Пожалуй, самый перспективный пневмокар.

Основные плюсы пневмодвигателя — это его экологичность и низкая стоимость «топлива». Собственно, из-за безотходности пневмолокомотивы и получили распространение в шахтном деле — при использовании ДВС в замкнутом пространстве воздух быстро загрязняется, резко ухудшая условия работы. Отработанные же газы пневмодвигателя — это обычный воздух.

Один из недостатков пневмоцилиндра — относительно низкая плотность энергии, то есть количество вырабатываемой энергии на единицу объема рабочего тела. Сравните: воздух (при давлении 30 МПа) имеет плотность энергии порядка 50 кВт ч на литр, а обычный бензин — 9411 кВт ч на литр! То есть бензин как топливо эффективнее почти в 200 раз. Даже с учетом не очень высокого КПД бензинового двигателя он «выдает» в итоге около 1600 кВт ч на литр, что значительно выше, чем показатели пневмоцилиндра. Это ограничивает все эксплуатационные показатели пневмодвигателей и движимых ими машин (запас хода, скорость, мощность и т. д.). Помимо того, пневмодвигатель имеет относительно небольшой КПД — порядка 5−7% (против 18−20% у ДВС).


Пневматика XXI века

Актуальность экологических проблем XXI века заставила инженеров вернуться к давно забытой идее использования пневмоцилиндра в качестве двигателя для дорожного транспортного средства. По сути, пневмоавтомобиль экологичнее даже электромобиля, элементы конструкции которого содержат вредные для окружающей среды вещества. В пневмоцилиндре же — воздух и ничего кроме воздуха.

Поэтому основной инженерной задачей было приведение пневмокара к виду, в котором он мог бы конкурировать с электромобилями по эксплуатационным характеристикам и стоимости. Подводных камней в этом деле множество. Например, проблема дегидратации воздуха. Если в сжатом воздухе будет хотя бы капля жидкости, то из-за сильного охлаждения при расширении рабочего тела она превратится в лед, и двигатель просто заглохнет (или даже потребует ремонта). Обычный летний воздух содержит примерно 10 г жидкости на 1 м 3 , и при наполнении одного баллона нужно затратить дополнительную энергию (около 0,6 кВт ч) на дегидратацию — причем эта энергия невосполнима. Данный фактор сводит на нет возможность качественной домашней заправки — оборудование для дегидратации невозможно установить и эксплуатировать в домашних условиях. И это лишь одна из проблем.

Тем не менее тема пневмоавтомобиля оказалась слишком привлекательной, чтобы о ней забыть.


На полном баке и полной заправке воздухом Peugeot 2008 Hybrid Air может проехать до 1300 км.

Сразу в серию?

Одно из решений, позволяющих минимизировать недостатки пневмодвигателя, — облегчение автомобиля. Действительно, городской микролитражке не нужен большой запас хода и скорость, а вот экологические показатели в мегаполисе играют значительную роль. Именно на это рассчитывают инженеры франко-итальянской компании Motor Development International, которые на Женевском автосалоне 2009 года представили миру пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. MDI начали «сражаться» за пневмокар еще в 2003-м, показав концепт Eolo Car, но лишь спустя десять лет, набив множество шишек, французы пришли к приемлемому для конвейера решению.


MDI AIRpod — это нечто среднее между автомобилем и мотоциклом, прямой аналог мотоколяски-«инвалидки», как ее частенько называли в СССР. Благодаря 5,45-сильному воздушному двигателю трехколесная малолитражка массой всего 220 кг может разогнаться до 75 км/ч, а запас ее хода составляет 100 км в базовом варианте или 250 км в более серьезной конфигурации. Интересно, что у AIRpod вообще нет руля — машина управляется джойстиком. В теории она может передвигаться как по дорогам общего пользования, так и по велодорожкам.

У AIRpod есть все шансы на серийное производство, поскольку в городах с развитой велоструктурой, например в Амстердаме, такие машинки могут быть востребованы. Одна заправка воздухом на специально оборудованной станции занимает около полутора минут, а стоимость передвижения составляет в итоге порядка 0,5 на 100 км — дешевле просто некуда. Тем не менее заявленный срок серийного производства (весна 2014 года) уже прошел, а воз и ныне там. Возможно, MDI AIRpod появится на улицах европейских городов в 2015-м.


Кроссовый мотоцикл, построенный австралийцем Дином Бенстедом на шасси Yamaha, способен разгоняться до 140 км/ч и безостановочно ехать в течение трех часов на скорости 60 км/ч. Воздушный двигатель системы Анжело ди Пьетро весит всего лишь 10 кг.

Второй предсерийный концепт — это известный проект индийского гиганта Tata, автомобиль MiniCAT. Проект был запущен одновременно с AIRpod, но, в отличие от европейцев, индусы заложили в программу нормальный, полноценный микроавтомобиль с четырьмя колесами, багажником и традиционной компоновкой (в AIRpod, заметим, пассажиры и водитель сидят спинами друг к другу). Масса Tata чуть побольше, 350 кг, максимальная скорость — 100 км/ч, запас хода — 120 км, то есть MiniCAT в целом похож на машину, а не на игрушку. Интересно, что в компании Tata не мучились с разработкой воздушного двигателя «с нуля», а за $28 млн приобрели права на использование разработок MDI (что позволило последней удержаться на плаву) и усовершенствовали двигатель для приведения в движение более крупного транспортного средства. Одна из фишек этой технологии — использование тепла, выделяющегося при охлаждении расширяющегося воздуха, для нагрева воздуха при заправке баллонов.

Изначально Tata собиралась поставить MiniCAT на конвейер в середине 2012 года и производить порядка 6000 единиц в год. Но обкатка продолжается, а серийное производство отложено до лучших времен. За время разработки концепт успел сменить имя (ранее он назывался OneCAT) и дизайн, так что какая его версия поступит в итоге в продажу, не знает никто. Кажется, даже представители Tata.

На двух колесах

Чем легче автомобиль на сжатом воздухе, тем он более эффективен в плане эксплуатационных и экономических показателей. Логичный вывод из этого утверждения — почему бы не сделать скутер или мотоцикл?


Этим озаботился австралиец Дин Бенстед, который в 2011 году продемонстрировал миру кроссовый мотоцикл O 2 Pursuit с силовым агрегатом, разработанным фирмой Engineair. Последняя специализируется на уже упомянутых роторных воздушных двигателях разработки Анжело ди Пьетро. По сути, это классической компоновки «ванкели» без сгорания — ротор приводится в движение подачей воздуха в камеры. Бенстед пошел при разработке от обратного. Сперва он заказал Engineair двигатель, а потом построил вокруг него мотоцикл, использовав раму и часть элементов от серийной Yamaha WR250R. Машина получилась на удивление энергоэффективной: на одной заправке она проходит 100 км и в теории развивает максимальную скорость 140 км/ч. Эти показатели, к слову, превышают аналогичные у многих электрических мотоциклов. Бенстед остроумно сыграл на форме баллона, вписав его в раму, — это позволило сэкономить место; двигатель в два раза компактнее своего бензинового собрата, а свободное место позволяет установить второй баллон, увеличив пробег мотоцикла в два раза.

Но, к сожалению, O 2 Pursuit остался лишь одноразовой игрушкой, хотя и был номинирован на престижную изобретательскую премию, учрежденную Джеймсом Дайсоном. Спустя два года идею Бенстеда подхватил другой австралиец, Дарби Бичено, который предложил создать по схожей схеме не мотоцикл, а сугубо городское транспортное средство, скутер. Его EcoMoto 2013 должен быть сделан из металла и бамбука (никакого пластика), но дальше рендеров и чертежей дело пока что не продвинулось.

Помимо Бенстеда и Бичено, схожую машину в 2010 году построил Эвин И Ян (его проект назывался Green Speed Air Motorcycle). Все три конструктора, к слову, были студентами Королевского технологического института Мельбурна, и потому их проекты схожи, используют один и тот же двигатель и… не имеют шанса на серию, оставаясь исследовательскими работами.


В 2011 году спортивный автомобиль Toyota Ku: Rin установил мировой рекорд скорости для транспортных средств, приводимых в движение энергией сжатого воздуха. Обычно пневмоавтомобили не разгоняются более чем до 100−110 км/ч, концепт же Toyota показал официальный результат 129,2 км/ч. Ввиду «заточенности» на скорость, Ku: Rin на одной зарядке мог проехать всего 3,2 км, но больше трехколесному одноместному болиду и не требовалось. Рекорд установлен. Интересно, что до того рекорд составлял всего лишь 75,2 км/ч и был установлен в Бонневилле болидом Silver Rod конструкции американца Дерека Маклиша летом 2010 года.

Корпорации на старте

Вышесказанное подтверждает, что у воздушных автомобилей будущее есть, но, скорее всего, не в «чистом виде». Все-таки они имеют свои ограничения. Тот же MDI AIRpod провалил абсолютно все краш-тесты, поскольку его сверхлегкая конструкция не позволяла должным образом защищать водителя и пассажиров.

А вот использовать пневмотехнологии в качестве дополнительного источника энергии в гибридном автомобиле вполне реально. В связи с этим компания Peugeot объявила о том, что с 2016 года часть кроссоверов Peugeot 2008 будет выпускаться в гибридном варианте, одним из элементов которого будет установка Hybrid Air. Эта система разработана в сотрудничестве с Bosch; суть ее в том, что энергия ДВС будет запасаться не в форме электроэнергии (как в обычных гибридах), а в баллонах со сжатым воздухом. Планы, правда, так и остались планами: на данный момент на серийные автомобили установка не ставится.


Peugeot 2008 Hybrid Air сможет двигаться, используя энергию ДВС, воздушного силового агрегата или их комбинации. Система будет сама распознавать, какой из источников энергоэффективнее в той или иной ситуации. В городском цикле, в частности, 80% времени будет использоваться энергия сжатого воздуха — он приводит в движение гидронасос, который вращает вал при отключенном ДВС. Суммарная экономия топлива при такой схеме составит до 35%. При работе на чистом воздухе максимальная скорость автомобиля ограничивается 70 км/ч.

Концепт Peugeot выглядит абсолютно жизнеспособным. С учетом экологических преимуществ подобные гибриды вполне смогут потеснить электрические в течение ближайших пяти-десяти лет. И мир станет немножечко чище. Или не станет.

Одной из самых значительных проблем современности является проблема загрязнения окружающей среды. Каждый день человечество выбрасывает в атмосферу огромное количество углекислого газа. Каждая машина, работающая на двигателе внутреннего сгорания, вредит нашей планете и делает экологическую ситуацию еще хуже. К сожалению это не все. Энергетическая проблема стоит не менее остро, ведь запасы нефти не бесконечны, цены на бензин все растут, и нет причин для их уменьшения. В поисках альтернативных источников топливо было изобретено множество проектов, но все они либо слишком дорогостоящи, либо малоэффективны. Хотя один из них выглядит весьма обещающим. Судя по нему, возможно, новым топливом будущего станет… воздух!

Звучит фантастично, не правда ли? Разве это возможно, чтобы автомобиль ездил на воздухе? Конечно, это возможно. Но это воздух не в таком виде, в котором мы им дышим сейчас - чтобы двигать автомобиль, нужен сжатый воздух. Сжатый, и находящийся под высоким давлением, воздух двигает поршни двигателя, и автомобиль движется! После того как он отработал в двигателе, воздух возвращается в атмосферу абсолютно чистым. Бака достаточно на 200 километров пути, и скорость тоже весьма впечатляет - до 110 километров в час! (Как ни странно, автомобильные двигатели на сжатом воздухе имеют очень давнюю историю. Впервые эта технология была применена еще в восьмидесятых годах девятнадцатого века, когда Луи Мекарски запатентовал свое изобретение, получившее название «пневматический трамвай».) Этот автомобиль не только полностью экологичен, он также существенно сэкономит деньги своему владельцу! Одна полная заправка сжатым воздухом обойдется в полтора евро, и за считанные минуты автомобиль будет снова готов к путешествиям. Полтора евро практически равны по цене двум литрам бензина. Посчитайте, сколько проедет ваша машина на двух литрах - наверняка цифра будет куда меньше чем 200 километров. Ведь после небольших и несложных подсчетов, ежедневная заправка автомобиля сжатым воздухом обойдется как минимум в 10 раз дешевле! Изобретатель этого интересного концепта, неутомимый француз Ги Нэгр (Guy Negre), бывший инженер «Формулы 1», работал над своим проектом более десяти лет. Оригинальная схема двигателя, похожая на обычный ДВС, позволяла приводить в движение автомобиль за счет сжатого воздуха, хранящегося в баллонах. Идея была позаимствована Нэгром именно из конструкции гоночных болидов, в которых для разгона используется турбина, питаемая сжатым воздухом из специального баллона. Начал Ги Нэгр с оригинальной концепции гибридного автомобиля, который на малых оборотах двигался бы за счет воздуха, а на больших - запускал обычный двигатель внутреннего сгорания. Этот автомобиль был разработан в середине 90-х, однако изобретатель решил пойти еще дальше. Результатом 10 лет напряженной работы стало несколько моделей, ездящих исключительно на сжатом воздухе. В основе “воздушного автомобиля” Ги Нэгра лежит мотор, по конструкции весьма похожий на стандартный ДВС. В двигателе два рабочих и два вспомогательных цилиндра. Теплый воздух засасывается прямо из атмосферы и дополнительно подогревается. Затем он попадает в камеру, где смешивается с охлажденным до -100 градусов Цельсия сжатым воздухом. Воздух быстро разогревается, резко увеличивается в объеме и толкает поршень главного цилиндра, который приводит в движение коленчатый вал. Первые прототипы чисто воздушного автомобиля, созданного французами из фирмы Ги Нэгра Motor Development International (MDI), были продемонстрированы в начале 2000-х, а сейчас, наконец, дело дошло до масштабного внедрения этой замечательной разработки. Компания Tata Motors, крупнейший производитель автомобилей в Индии, договорилась с MDI о запуске лицензионного производства небольшого трехместного экомобиля, работающего на сжатом воздухе. Модель MiniC.A.T оснащена баллоном из углеволокна, вмещающим 90 куб. м. сжатого воздуха. На одной заправке воздухом машина способна проехать от 200 до 300 км, с максимальной скоростью в 110 км/ч. С помощью компрессоров, установленных на АЗС, ее можно будет заправить за 2-3 минуты, уплатив при этом каких-то 1,5 евро. Возможен и альтернативный вариант заправки при помощи встроенного компрессора, подключаемого к обычной сети переменного тока. Чтобы полностью заполнить “бак”, ему потребуется 3-4 часа. Несмотря на то, что электричество производится в основном за счет сжигания ископаемого сырья, воздушный экомобиль оказывается гораздо эффективнее автомобилей с ДВС. По КПД он превосходит обычные автомобили в 2 раза, а электромобили - в 1,5. Кроме того, его отличает полное отсутствие вредных выхлопов, а также крайняя неприхотливость в обслуживании: благодаря отсутствию камеры сгорания масло в двигателе можно менять не чаще, чем через каждые 50 тыс. км пробега. Экомобиль MiniC.A.T будет выпускаться в четырех модификациях. Они включают в себя трехместную легковую модель, пятиместное такси, мини-вэн и легкий грузовой пикап. Автомобили будут продаваться по цене около 5 500 фунтов (примерно 11000 долларов) , что весьма доступно.. В планах компании Tata - ежегодное производство не менее 3 тысяч “воздушных автомобилей”.Продавать их планируют в Европе и Индии, но если проект обретет популярность, возможно и по всему миру. Почин индийцев поддержала американская компания Zero Pollution Motors, которая объявила о скором выводе на американский рынок автомобилей, работающих на сжатом воздухе и построенных по технологии Гая Негре. Zero Pollution Motors планирует производить автомобили CityCAT с вариантом двигателя (6-цилиндровый, 75-сильный Dual-Energy), позволяющего работать в двух режимах: просто на сжатом воздухе, либо с потреблением небольшого количества топлива для повышения температуры воздуха в баллонах и соответственно мощности. В таком режиме автомобиль потребляет около 2.2 литров бензина на 100 километров вне города. CityCAT – шестиместный автомобиль с вместительным багажником. Кузов состоит из стеклопластиковых панелей, крепящихся к алюминиевому каркасу. Автомобиль сможет проезжать в городе 60 километров на одном запасе воздуха, а за городом при небольшом расходе бензина – 1360 километров. Скорость авто при работе только на сжатом воздухе – 56 км/ч, при использовании бензина – 155 км/ч. Ориентировочная стоимость авто – 17.8 тысяч долларов. Первая партия должна поступить на рынок в 2010 году. Будем надеяться, что это не последний шаг для развития экологически чистых способов передвижения. Впрочем, отзывы о "воздухомобиле" в СМИ из восторженных постепенно превратились в скептические.О них - ниже.

В 2000 году многочисленные СМИ, в том числе ВВС, пророчили, что в начале 2002 года начнётся массовое производство автомобилей, использующих воздух вместо топлива.

Поводом для такого смелого заявления послужила презентация автомобиля под названием e.Volution на выставке Auto Africa Expo2000, которая состоялась в Йоханнесбурге.

Изумлённой общественности сообщили, что e.Volution может без дозаправки проехать около 200 километров, развивая при этом скорость до 130 км/час. Или же в течение 10 часов со средней скоростью 80 км/час. Было заявлено, что стоимость такой поездки обойдётся владельцу e.Volution в 30 центов. При этом весит машина всего 700 кг, а двигатель - 35 кг. Революционную новинку представила французская фирма MDI (Motor Development International), которая тут же объявила о намерении начать серийный выпуск автомобилей, оборудованных двигателем на сжатом воздухе. Изобретателем двигателя является французский инженер-моторостроитель Гай Негр (Guy Negre), известный, как разработчик пусковых устройств для болидов «Формулы 1» и авиационных двигателей. Негр заявил, что ему удалось создать двигатель, работающий исключительно на сжатом воздухе без каких бы то ни было примесей традиционного топлива. Своё детище француз назвал Zero Pollution, что означает нулевой выброс вредных веществ в атмосферу. Девизом Zero Pollution стало «Простой, экономичный и чистый», то есть упор был сделан на его безопасность и безвредность для экологии. Принцип работы двигателя, по словам изобретателя, таков: «Воздух засасывается в малый цилиндр и сжимается поршнем до уровня давления в 20 бар. При этом воздух разогревается до 400 градусов. Затем горячий воздух выталкивается в сферическую камеру. В „камеру сгорания“, хотя в ней уже ничего не сгорает, под давлением подаётся и холодный сжатый воздух из баллонов, он сразу же нагревается, расширяется, давление резко возрастает, поршень большого цилиндра возвращается и передаёт рабочее усилие на коленчатый вал. Можно даже сказать, что „воздушный“ двигатель работает так же, как и обычный двигатель внутреннего сгорания, но только никакого сгорания тут нет». Было заявлено, что выбросы автомобиля не опаснее углекислого газа, выделяемого при дыхании человека, двигатель можно смазывать растительным маслом, а электрическая система состоит всего лишь из двух проводов. На заправку такого воздухомобиля требуется около 3 минут. Представители Zero Pollution заявили, что для заправки «воздухомобиля» достаточно наполнить воздушные резервуары, расположенных под днищем автомобиля, что занимает около четырёх часов. Впрочем, в будущем планировалось построить «воздухозаправочные» станции, способные наполнить 300-литровые баллоны всего за 3 минуты. Предполагалось, что продажи «воздухомобилей» начнутся в Южной Африке по цене около $10 тысяч. Также говорилось о строительстве пяти фабрик в Мексике и Испании и трёх - в Австралии. Лицензию на производство автомобиля якобы уже получили больше дюжины стран, а южноафриканская компания вроде бы получила заказ на производство 3000 автомобилей, вместо запланированной экспериментальной партии в 500 штук. Но после громких заявлений и всеобщего ликования что-то произошло. Внезапно всё стихло и о «воздухомобиле» почти забыли. Тишина представляется тем более зловещей, что некоторое время назад «заглох» официальный сайт Zero Pollution. Причина нелепая: страница якобы не справляется с огромным потоком запросов. Впрочем, создатели сайта в расплывчатой форме обещают его когда-нибудь «улучшить». Появление воздухомобилей на дорогах должно было стать серьезным вызовом традиционному транспорту. Есть мнение, что экологичную разработку саботировали автомобильные гиганты: предвидев приближающийся крах, когда выпускаемые ими бензиновые двигатели никому не будут нужны, они якобы решили выскочку «задушить на корню». Эту версию отчасти подтверждает Deutsche Welle: «Авторемонтные предприятия и нефтяные концерны единодушно считают автомобиль с воздушным двигателем „недоработанным“. Впрочем, это можно списать на их предвзятость. Однако и многие независимые эксперты настроены скорее скептически, тем более что ряд крупных автомобилестроительных концернов - например, „Фольксваген“, - уже в 70-х и 80-х годах вели исследования в этом направлении, но затем свернули их ввиду полной бесперспективности». Почти такого же мнения придерживаются и защитники окружающей среды: «Потребуется очень много времени, чтобы убедить автомобильных производителей начать выпуск „воздушных“ двигателей. Автомобильные компании уже потратили огромное количество денег на эксперименты с электрическими автомобилями, которые оказались неудобными и дорогими. Им больше не нужны новые идеи». Zero Pollution - двигатели с нулевым выбросом вредных веществ. Кроме этого, они легки и компактны. Но Deutsche Welle обращает внимание на то, что в различных публикациях «описание двигателя и принципиальная схема его работы грешат неточностями и ошибками, а, кроме того, версии на разных языках не только изрядно различаются, но порой и прямо противоречат друг другу. Чуть ли не в каждом издании приводятся свои, отличные от прочих, технические параметры. Разброс цифр столь велик, что невольно задаёшься вопросом: неужели они относятся к одному и тому же автомобилю? Ещё одна странная закономерность состоит в том, что с каждой следующей публикацией параметры автомобиля улучшаются: то мощность подрастёт, то цена упадёт, то масса уменьшится, то ёмкость баллонов увеличится. Так что, сомнения тут вполне уместны и оправданы. Однако ждать осталось недолго. Вероятно, уже в наступающем году мы точно узнаем, что же такое этот разработанный фирмой MDI двигатель на сжатом воздухе - революция в автомобилестроении или во всех смыслах слова „дутая“ сенсация». Между тем, вполне возможно, что и в 2002 году интрига с «воздухомобилем» не разрешится. В результате продолжительных поисков информации в Сети был обнаружен один более-менее «живой» сайт, который обещает серийное производство революционных автомобилей в 2003 году. Кстати, в процессе поисков было найдено много интересного на «воздушную» тему. Любопытно, что на состоявшейся в феврале 2001 года в Нюрнберге международной ярмарке игрушек канадская фирма Spin Master предложила покупателям модель самолета, оснащённой двигателем, работающим на сжатом воздухе. Мини-резервуар можно надувать любым насосом, и пропеллеры уносят оригинальную игрушку в небеса. Кроме того, в Интернете имеется коммерческое предложение, адресованное, по всей видимости, правительству Москвы. В этом документе одна столичная компания предлагает чиновникам «ознакомиться с предложением автомобильной фирмы MDI (Франция) о производстве в Москве абсолютно экологически чистых и экономичных автомобилей». Встретилось и предложение В. А. Конощенко, который сообщает об изобретённом им автомобиле, работающем на сжатом воздухе, прилагая описание устройства. Также попалось на глаза изобретение Раиса Шаймухаметова - «Садоход», который «приводится в движение от сжатого воздуха: под капотом небольшой двигатель и серийный компрессор. Воздух вращает автономно друг от друга два блока (слева и справа) эксцентрических роторов (поршней). Роторы в блоке через ходовые колеса соединены гусеничной цепью». В итоге сложилось двоякое впечатление: с одной стороны не до конца понятная история с французским «воздухомобилем», а с другой - куда более чёткое ощущение, что «воздушный» транспорт давно используется и в особенности почему-то в России. И притом с позапрошлого века. Есть данные о том, что спроектированная самоучкой И. Ф. Александровским 33-метровая подводная лодка с двигателем, работающим на сжатом воздухе, летом 1865 года была спущена на воду, успешно прошла ряд испытаний и только после этого затонула. МАШИНА НЕГРА - ДУТАЯ СЕНСАЦИЯОшарашивающая идея - автомобиль на сжатом воздухе - оказалась мифом Сергей ЛЕСКОВ Известных на Земле запасов нефти хватит не более чем на 50 лет. Чем только не пытаются заменить бензин, который, ко всему прочему, является главным источником загрязнения воздуха в больших городах. И сжиженным природным газом, и всякого рода синтезированными газами и жидкостями, и даже спиртом. Долго надежды возлагались на электромобиль, но его технические характеристики невысоки, а утилизация источника энергии оказалась проблемой для экологии. И вот новая, ошарашивающая идея - автомобиль на сжатом воздухе. Французский инженер Ги Негр заработал известность в автомобильном мире своими стартерами для болидов "Формулы-1" и авиационных моторов. В его конструкторском досье 70 патентов. Это говорит о том, что Негр не самоучка из числа тех, кто досаждает своими открытиями всем автомобильным фирмам мира. Несколько лет назад уважаемый Негр создал фирму MDI (Motor Development International), которая занялась разработкой двигателями на сжатом воздухе. Первая реакция любого эксперта - бред, блажь и опять бред. Но еще в 1997 году в Мексике парламентская комиссия по транспорту заинтересовалась этой разработкой, специалисты посетили завод в Бриньоле и подписали соглашение о постепенной замене всех 87 тысяч такси в Мехико, самой загрызенной столице мира, машинами с чистым "выдохом". Два года назад на выставке Auto Africa Expo 2000 состоялась презентация созданного командой Негра концепт-кара под названием e . Volution . Как и было обещано, в качестве топлива он использовал сжатый воздух. В Йоханнесбурге на волне всеобщего интереса было объявлено о начале серийного выпуска чудо-автомобиля с двигателем Zero Pollution в 2002 году. В ЮАР предполагалось сделать 3 тысячи e . Volution . Назначенный год на дворе. Где же "воздухомобиль"? Публикаций на эту тему много, но характеристики скачут, будто речь не о технике, а об арабском жеребце. Если усреднить все протоколы, то выйдет такой портрет: e . Volution весит 700 кг, мотор Zero Pollution - 35 кг. Автомобиль может проехать без дозаправки 200 км. Максимальная скорость - 130 км/ч. На скорости 80 км/ч он может двигаться 10 часов. Ориентировочная цена - 10 тысяч долларов. Чтобы закачать в баллоны воздух, нужна энергия, а электростанции - тоже источник загрязнений. Авторы проекта посчитали КПД в цепочке "нефтеперегонный завод - автомобиль" для бензинового, электрического и воздушного двигателя: 9, 13 и 20% соответственно. То есть "воздушник" лидирует с заметным отрывом. Сама заправка занимает около 4 часов, а баллоны спрятаны под днище. Принцип работы "воздушника" не отличается от двигателя внутреннего сгорания. Нет по причине отсутствия горючего только самого сгорания. Нет, кроме того, систем зажигания, впрыска топлива, бензобака. Воздух в баллонах находится под давлением 200 атмосфер. Идея конструкторов такова: в малый цилиндр засасывается часть выхлопа и сжимается поршнем до давления 20 атмосфер. Раскаленный до 400 градусов воздух выталкивается в камеру, которая является аналогом камеры сгорания. В нее подается сжатый воздух из баллонов. Он нагревается - и в результате поршень цилиндра движется, передавая рабочее усилие на коленчатый вал. По мере приближения к объявленной дате выпуска в публикациях на эту тему разнобой все заметнее. Создается впечатление, что команда Ги Негра столкнулась с серьезными техническими проблемами. Чтобы разъяснить ситуацию, "Известия-Наука" обратились к самым авторитетным в нашей стране специалистам из Государственного научного центра "Научно-исследовательский автомобильный и автомоторный институт (НАМИ)". - Мы рассчитали рабочий цикл этого двигателя, - сказал заведующий отделом газобалонного оборудования НАМИ Владислав Лукшо. - Это очередная попытка обмануть основополагающие законы природы, проскочить мимо правил термодинамики. Можно эту идею развить: заставить водителя качать ногами воздух. Идея двигателя на сжатом воздухе несуразна, потому что его КПД очень мал. Полученная от механического сжатия энергия на килограмм веса в 20-30 раз уступает химической энергии углеводородного топлива. У бензина конкурентов не видно. Выше показатели только у атомной энергии. Этот e . Volution сможет ездить только на небольшие расстояния, как летают игрушки с пневмодвигателями. Скептическое отношение к двигателю на сжатом воздухе вовсе не означает, в этом уверены специалисты НАМИ, что попытки найти альтернативу бензиновому двигателю обречены. Уже удалось добиться сносных характеристик у газовых двигателей на пропан-бутане, которые уступают по теплоотдаче топлива бензиновому двигателю только в 1,5 раза. Предпринимаются в продолжение заветов чонкинского приятеля Гладышева усилия, дабы освоить двигатель на биогазе, который получают из всяческих отбросов. Большие перспективы у водорода, причем способы его применения весьма разнообразны - от добавок к бензину до сжижения или использования в виде соединений с металлами (гидридов). Согласно последним разработкам НАМИ, водород лучше не сжигать: в тепловыделяющем элементе он вступает в реакцию, возникает электрический ток, который преобразуется в механическую энергию. Еще один вариант - спирт, который энергетически "сильнее" газа, хотя и "слабее" бензина. Двигатели на спирте получили распространение в Бразилии. Правда, в России о внедрении этой конструкции и говорить не стоит - просто глупо.