Система охлаждения двигателя автомобиля. Глава i

Кратко о том, как работает система охлаждения двигателя автомобиля.

Ответьте на вопрос какая часть автомобиля важнее: , или система охлаждения мотора? Если вы выбрали одну или две из предложенных позиций в списке, вы ответили неверно. На самом деле все вышеперечисленные позиции жизненно важны для любой машины. Сбой в каждой из них приведет к серьезным последствиям исправить которые будет непросто.

Возьмем, например, систему охлаждения мотора. Если она неисправна или режим работы двигателя превышает заложенные при ее проектировании рабочие показатели есть вероятность, что вы можете увидеть редкое явление, которое впоследствии будет приходить вам в кошмарных снах, из-под капота начнет валить густой горячий пар, а стрелка датчика температуры двигателя упрется в красную зону отмечая критический перегрев мотора. Двигатель после такой паровой бани и предельных температур вполне возможно отправится в автосервис на капитальный ремонт или прямиком на свалку. Таков результат неправильной работы системы охлаждения.

И так, первая полезная информация для новичков. Цель системы охлаждения- создать идеальные термические условия работы для двигателя, которые исключат возможность его перегрева. В ДВС происходят экзотермические реакции (то есть он производит большое количество тепла) и в том случае если система охлаждения не в состоянии забрать излишнее тепло от блока цилиндров, двигатель начнет деформироваться (может повести головку блока цилиндров), масло будет не в состоянии обеспечить достаточную защиту (ухудшаться его защитные свойства), двигатель начнет быстро изнашиваться и в конечном счете его заклинит.

Самой важной частью системы охлаждения двигателя безусловно является водяной насос. Он заставляет охлаждающую жидкость созданную на основе этиленгликоля циркулировать по самым горячим частям двигателя, а также через корпус термостата, радиатор, радиатор отопителя и другие трубки и шланги входящие в систему охлаждения.

Все двигатели внутреннего сгорания охлаждаются посредством конвективного теплообмена (перенос теплоты в неравномерно нагретой жидкой, газообразной и иных текучих средах, более подробно читайте здесь: yandex.ru) и почти во всех современных автомобилях в качестве жидкого антифриза используется жидкость, основанная на этиленгликоле. У нее есть ряд преимуществ по сравнению с другими техническими жидкостями, такие как высокая теплоемкость, очень высокая температура кипения и низкая температура замерзания. Именно ее прокачивает через двигатель водяной насос приводимый в движение от коленвала приводным ремнем привода вспомогательных агрегатов.

Как работает термостат?

В работе термостата используется воск. Воск залитый в латунную или алюминиевую капсулу при нагревании толкает небольшой поршень от корпуса термостата, сжимая пружину. Термостат открывается. После охлаждения системы пружина возвращает термостат в закрытое положение (работа термостата показана на 5.37 минуте видео. Кстати! Этот вариант показанный можно использовать в качестве проверки работы термостата с вашего автомобиля, если вы сомневаетесь в его правильном функционировании)

На холодном двигателе охлаждающая жидкость идет по так называемому малому кругу через блок цилиндров, головку блока цилиндров, именуемую «головой» и (по этой причине вы сразу же получаете теплый воздух в салоне после запуска двигателя).

Как только мотор достигает примерно 95 градусов, воск в термостате расширяется и открывает клапан направляя охлаждающую жидкость из двигателя в радиатор охлаждения.

Как устроен радиатор охлаждения?


Нагретая охлаждающая жидкость проходит через трубки радиатора, отдавая тепло от теплоносителя (жидкости) трубкам, затем передавая его ребрам радиатора (ребра выполнены из гофрированного металла). Ребра, с их большой площадью поверхности, способствуют высокой теплоотдачи встречаясь с набегающим потоком охлажденного воздуха (для увеличения эффекта охлаждения или в тех случаях, когда автомобиль находится в неподвижном состоянии, перед радиатором ставится большой вентилятор, который дополнительно прогоняет воздух через ребра охлаждения). Таким образом охлаждающая жидкость протекая через радиаторную решетку охлаждается и попадает в противоположный бак на радиаторе. Цикл повторяется, охлажденная жидкость возвращается в водяной насос и охлаждает двигатель, круг замкнулся.

Срез радиатора показывает нам два ряда трубок, через которые проходит охлаждающая жидкость, которая переносит тепло от двигателя ребрам радиаторной решетки.

Работа двигателя внутреннего сгорания (ДВС) приводит к чрезмерному нагреванию всех его деталей и без их охлаждения функционирование главного агрегата транспортного средства невозможно. Эту роль выполняет система охлаждения двигателя, которая также отвечает за обогревание салона авто. В турбированных двигателях с ее помощью снижается температура воздуха, нагоняемого в цилиндры, а в АКПП эта система охлаждает жидкость, которая применяется для ее работы. Отдельные модели машин оснащают масляным радиатором, который принимает участие в терморегуляции масла, использующегося для смазки двигателя.

Система охлаждения ДВС бывает воздушная и жидкостная

Обе эти системы не идеальны и имеют как достоинства, так и недостатки.

Преимущества воздушной системы охлаждения:

  • небольшой вес двигателя;
  • простота устройства и его обслуживания;
  • невысокая требовательность к температурным изменениям.

Недостатки воздушной системы охлаждения:

  • большой шум от работы двигателя;
  • перегрев отдельных деталей мотора;
  • невозможность выстроить цилиндры блоками;
  • затруднительность в использовании выделяемого тепла для обогревания салона авто.

В современных условиях автопроизводители предпочитают оснащать свои машины преимущественно двигателями с системами жидкостного охлаждения. Воздушные конструкции, охлаждающие узлы мотора, встречаются очень редко.

Преимущества жидкостной системы охлаждения:

  • не такой шумный двигатель по сравнению с воздушной системой;
  • высокая скорость начала работы при запуске мотора;
  • равномерное охлаждение всех деталей силового механизма;
  • меньшая предрасположенность к детонации.

Недостатки жидкостной системы охлаждения:

  • дорогое техническое обслуживание и ремонт;
  • возможное вытекание жидкости;
  • частые переохлаждения мотора;
  • замерзание системы в периоды морозов.

Структура жидкостной системы охлаждения двигателя

К основным составляющим жидкостной системы охлаждения ДВС относятся следующие детали:

  • «водяная рубашка» двигателя
  • вентилятор;
  • радиатор;
  • помпа (центробежный насос);
  • термостат;
  • бачок расширительный;
  • теплообменник отопителя;
  • составляющие элементы управления.

Водяная рубашка двигателя – это плоскость между стенками агрегата в тех местах, которым требуется охлаждение.

Радиатор системы охлаждения – это механизм, который предназначен для отдачи созданного работой двигателя тепла. Узел представляет собой конструкцию из многих изогнутых алюминиевых трубой, которые также имеют дополнительные ребра, способствующие большей теплоотдаче.

Вентилятор используется для ускорения циркуляции воздуха, обволакивающего радиатор. Вентилятор включается при граничном нагревании охлаждающей жидкости.

Центробежный насос (другими словами – помпа) обеспечивает беспрерывное движение жидкости во время работы двигателя. Привод для помпы может быть разным: ременной, например, или шестеренный. На авто с турбированными двигателями часто устанавливают добавочные насосы, которые способствуют циркуляции жидкости и запускаются из блока управления.

Термостат – это устройство в виде биметаллического (или электронного) клапана, расположенного между входным отверстием радиатора и «рубашкой охлаждения». Этот прибор обеспечивает нужную температуру жидкости, служащей для охлаждения ДВС. Когда мотор остывший, термостат закрыт, поэтому принудительная циркуляция остужающей жидкости проходит внутри двигателя, не затрагивая радиатор. В момент нагревания жидкости до граничной температуры клапан открывается. В этот момент система начинает функционировать во всю свою мощь.

Расширительный бачок используется для заливания охлаждающей жидкости. Этот узел компенсирует также изменение количества жидкости в системе во время изменения температуры.

Радиатор отопителя – механизм, предназначенный для подогрева воздуха в салоне транспортного средства. Его рабочая жидкость набирается непосредственно возле входа в «рубашку» мотора.

Главным элементом координации системы охлаждения ДВС есть датчик (температурный), электронный блок управления, а также исполнительные устройства.

Особенность работы системы охлаждения двигателя

Система охлаждения работает под контролем системы управления силовым агрегатом. Насос запускает циркуляцию жидкости в «рубашке охлаждения» двигателя. Учитывая степень нагрева, жидкость перемещается либо по малому, либо по большому кругу.


Чтобы двигатель быстрее прогрелся после запуска, жидкость циркулирует по кругу малому. После ее нагревания термостат открывается, предоставляя жидкости возможность циркулировать через радиатор, на выходе с которого на жидкость воздействует поток воздуха (встречного или от работающего вентилятора), который ее охлаждает.

В моторах с турбонаддувом может использоваться двухконтурная система охлаждения. Особенностью ее работы есть то, что один контур контролирует охлаждение нагнетаемого воздуха, а второй – охлаждение двигателя.

В процессе работы подвергаются воздействию очень высоких температур, и без отвода излишнего тепла его функционирование невозможно. Основным назначением системы охлаждения двигателя является охлаждение деталей работающего двигателя. Следующей по важности функцией системы охлаждения является нагрев воздуха в салоне. В двигателях с турбонаддувом система охлаждения снижает температуру нагнетаемого в цилиндры воздуха, в автомобилях с охлаждает рабочую жидкость в . В некоторых моделях автомобилей для дополнительного охлаждения масла в устанавливается масляный радиатор.

Системы охлаждения подразделяются на два основных типа:

  1. жидкостную;
  2. воздушную.

Каждая из этих систем имеет свои достоинства и недостатки.

Воздушная система охлаждения имеет следующие преимущества : простота конструкции и обслуживания, меньший вес двигателя, пониженные требования к температурным колебаниям окружающей среды. Недостатками двигателей с воздушным охлаждением являются большая потеря мощности на приводе охлаждающего вентилятора, шумная работа, чрезмерная тепловая нагрузка на отдельные узлы, отсутствие конструктивной возможности организации цилиндров по блочному принципу, сложности с последующим использованием отводимого тепла, в частности – для обогрева салона.

В современных двигателях автомобилей система воздушного охлаждения встречается довольно редко, и основное распространение получила система жидкостного охлаждения закрытого типа.

Устройство и схема жидкостной (водяной) системы охлаждения двигателя

Система жидкостного охлаждения позволяет равномерно забирать тепло у всех узлов двигателя, независимо от тепловых нагрузок. Двигатель водяного охлаждения является менее шумным относительно двигателя с воздушным охлаждением, менее склонен к детонации, быстрее разогревается при запуске.

Основными элементами системы жидкостного охлаждения двигателя как бензинового, так и дизельного являются:

  1. «водяная рубашка» двигателя;
  2. радиатор системы охлаждения;
  3. вентилятор;
  4. центробежный насос (помпа);
  5. термостат;
  6. расширительный бачок;
  7. радиатор отопителя;
  8. элементы управления.
  1. «Водяная рубашка» представляет собой сообщающиеся полости между двойными стенками двигателя в местах, откуда необходим отвод избыточного тепла посредством циркуляции охлаждающей жидкости.
  2. Радиатор системы охлаждения служит для отдачи тепла в окружающую среду. Радиатор выполняется из большого количества изогнутых (в настоящее время чаще всего алюминиевых) трубок, имеющих дополнительные ребра для повышения теплоотдачи.
  3. Вентилятор предназначен для усиления потока набегающего воздуха на радиатор системы охлаждения (работает в сторону двигателя) и включается посредством электромагнитной (иногда – гидравлической) муфты от сигнала датчика при превышении порогового значения температуры охлаждающей жидкости. Вентиляторы охлаждения с постоянным приводом от двигателя встречаются в настоящее время довольно редко.
  4. Центробежный насос (помпа) служит для обеспечения бесперебойной циркуляции охлаждающей жидкости в системе охлаждения . Привод помпы от двигателя осуществляется механическим путем: ремнем, реже - шестернями. Некоторые двигатели, такие как: двигатели с турбонаддувом, непосредственным впрыском топлива, могут оснащаться двухконтурной системой охлаждения - дополнительной помпой для указанных агрегатов, подключаемой по команде с электронного блока управления двигателем при достижении порогового значения температур.
  5. Термостат – прибор, представляющий собой биметаллический, реже - электронный клапан, установленный между «рубашкой» двигателя и входным патрубком радиатора охлаждения. Назначение термостата – обеспечение оптимальной температуры охлаждающей жидкости в системе. При холодном двигателе термостат закрыт, и циркуляция охлаждающей жидкости происходит «по малому кругу» - внутри двигателя, минуя радиатор. При увеличении температуры жидкости до рабочего значения термостат открывается, и система начинает работать в режиме максимальной эффективности.
  6. Системы охлаждения двигателей внутреннего сгорания в большинстве своем представляют собой системы закрытого типа, а потому в их состав включается расширительный бачок , компенсирующий изменение объема жидкости в системе при изменении температуры. Через расширительный бачок обычно и заливается охлаждающая жидкость в систему.
  7. Радиатор отопителя – это, по сути, радиатор системы охлаждения, уменьшенный в размерах и установленный в салоне автомобиля. Если радиатор системы охлаждения отдает тепло в окружающую среду, то радиатор отопителя – непосредственно в салон. Для достижения максимальной эффективности отопителя забор рабочей жидкости для него из системы осуществляется в самом «горячем» месте - непосредственно на выходе из «рубашки» двигателя.
  8. Основным элементом в цепи устройств управления системой охлаждения является температурный датчик . Сигналы с него поступают на контрольный прибор в салоне автомобиля, электронный блок управления (ЭБУ) с настроенным соответствующим образом программным обеспечением и, через него - на иные исполнительные устройства. Список этих исполнительных устройств, расширяющих стандартные возможности типовой системы жидкостного охлаждения достаточно широк: от управления вентилятором, до реле дополнительной помпы в двигателях с турбонаддувом или непосредственным впрыском топлива, режимом работы вентилятора двигателя после остановки, и так далее.

Принцип работы системы охлаждения

Здесь дана только общая, упрощенная схема работы системы охлаждения двигателя внутреннего сгорания. Современные системы управления двигателем на самом деле учитывают множество параметров, как то: температуру рабочей жидкости в системе охлаждения, температуру масла, температуру за бортом и прочее, и уже на основе собранных данных реализуют оптимальный алгоритм включения в работу тех или иных устройств.

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

В зависимости от способа охлаждения различают следующие виды систем охлаждения: жидкостная (закрытого типа), воздушная (открытого типа) и комбинированная. В системе жидкостного охлаждения тепло от нагретых частей двигателя отводится потоком жидкости. Воздушная система для охлаждения использует поток воздуха. Комбинированная система объединяет жидкостную и воздушную системы.

На автомобилях наибольшее распространение получили система жидкостного охлаждения. Данная система обеспечивает равномерное и эффективное охлаждение, а также имеет меньший уровень шума. Поэтому, устройство и принцип действия системы охлаждения рассмотрены на примере системы жидкостного охлаждения.

Конструкция системы охлаждения бензинового и дизельного двигателей подобны. Система охлаждения двигателя включает множество элементов, среди которых радиатор охлаждающей жидкости, масляный радиатор, теплообменник отопителя, вентилятор радиатора, центробежный насос, а также расширительный бачок и термостат. В схему системы охлаждения включена «рубашка охлаждения» двигателя. Для регулирования работы системы используются элементы управления.

Радиатор предназначен для охлаждения нагретой охлаждающей жидкости потоком воздуха. Для увеличения теплоотдачи радиатор имеет специальное трубчатое устройство.

Наряду с основным радиатором в системе охлаждения могут устанавливаться масляный радиатор и радиатор системы рециркуляции отработавших газов. Масляный радиатор служит для охлаждения масла в системе смазки.

Радиатор системы рециркуляции отработавших газов охлаждает отработавшие газы, чем достигается снижение температуры сгорания топливно-воздушной смеси и образования оксидов азота. Работу радиатора отработавших газов обеспечивает дополнительный насос циркуляции охлаждающей жидкости, включенный в систему охлаждения.

Теплообменник отопителя выполняет функцию, противоположную радиатору системы охлаждения. Теплообменник нагревает, проходящий через него, воздух. Для эффективной работы теплообменник отопителя устанавливается непосредственно у выхода нагретой охлаждающей жидкости из двигателя.

Для компенсации изменения объема охлаждающей жидкости вследствие температуры в системе устанавливается расширительный бачок. Заполнение системы охлаждающей жидкостью обычно осуществляется через расширительный бачок.

Циркуляция охлаждающей жидкости в системе обеспечивается центробежным насосом. В обиходе центробежный насос называют помпой . Центробежный насос может иметь различный привод: шестеренный, ременной и др. На некоторых двигателях, оборудованных турбонаддувом, для охлаждения наддувочного воздуха и турбокомпрессора устанавливается дополнительный насос циркуляции охлаждающей жидкости, подключаемый блоком управления двигателем.

Термостат предназначен для регулировки количества охлаждающей жидкости, проходящей через радиатор, чем обеспечивается оптимальный температурный режим в системе. Термостат устанавливается в патрубке между радиатором и «рубашкой охлаждения» двигателя.

На мощных двигателях устанавливается термостат с электрическим подогревом, который обеспечивает двухступенчатое регулирование температуры охлаждающей жидкости. Для этого в конструкции термостата предусмотрено три рабочих положения: закрытое, частично открытое и полностью открытое. При полной нагрузке на двигатель с помощью электрического подогрева термостата производится его полное открытие. При этом температура охлаждающей жидкости снижается до 90°С, уменьшается склонность двигателя к детонации. В остальных случаях температура охлаждающей жидкости поддерживается в пределах 105°С.

Вентилятор радиатора служит для повышения интенсивности охлаждения жидкости в радиаторе. Вентилятор может иметь различный привод:

  • механический (постоянное соединение с коленчатым валом двигателя );
  • электрический (управляемый электродвигатель );
  • гидравлический (гидромуфта ).

Наибольшее распространение получил электрический привод вентилятора, обеспечивающий широкие возможности для регулирования.

Типовыми элементами управления системы охлаждения являются датчик температуры охлаждающей жидкости, электронный блок управления и различные исполнительные устройства.

Датчик температуры охлаждающей жидкости фиксирует значение контролируемого параметра и преобразует его в электрический сигнал. Для расширения функций системы охлаждения (охлаждения отработавших газов в системе рециркуляции отработавших газов, регулирования работы вентилятора и др.) на выходе радиатора устанавливается дополнительный датчик температуры охлаждающей жидкости.

Сигналы от датчика принимает электронный блок управления и преобразует их в управляющие воздействия на исполнительные устройства. Используется, как правило, блок управления двигателем с устанавленным соответствующим программным обеспечением.

В работе системы управления могут использоваться следующие исполнительные устройства: нагреватель термостата, реле дополнительного насоса охлаждающей жидкости, блок управления вентилятором радиатора, реле охлаждения двигателя после остановки.

Принцип работы системы охлаждения

Работу системы охлаждения обеспечивает система управления двигателем. В современных двигателях алгоритм работы реализован на основе математической модели, которая учитывает различные параметры (температуру охлаждающей жидкости, температуру масла, наружную температуру и др.) и задает оптимальные условия включения и время работы конструктивных элементов.

Охлаждающая жидкость в системе имеет принудительную циркуляцию, которую обеспечивает центробежный насос. Движение жидкости осуществляется через «рубашку охлаждения» двигателя. При этом происходит охлаждение двигателя и нагрев охлаждающей жидкости. Направление движения жидкости в "рубашке охлаждения" может быть продольным (от первого цилиндра к последнему) или поперечным (от выпускного коллектора к впускному).

В зависимости от температуры жидкость циркулирует по малому или большому кругу. При запуске двигателя сам двигатель и охлаждающая жидкость в нем холодные. Для ускорения прогрева двигателя охлаждающая жидкость движется по малому кругу, минуя радиатор. Термостат при этом закрыт.

По мере нагрева охлаждающей жидкости термостат открывается, и охлаждающая жидкость движется по большому кругу – через радиатор. Нагретая жидкость проходит через радиатор, где охлаждается встречным потоком воздуха. При необходимости жидкость охлаждается потоком воздуха от вентилятора.

После охлаждения жидкость снова поступает в «рубашку охлаждения» двигателя. В ходе работы двигателя цикл движения охлаждающей жидкости многократно повторяется.

На автомобилях c турбонаддувом может применяться двухконтурная система охлаждения , в которой один контур отвечает за охлаждение двигателя, другой - за охлаждение наддувочного воздуха.

Сегодня из нашей постоянной рубрики «Как это работает » Вы узнаете устройство и принцип работы системы охлаждения двигателя , для чего нужен термостат и радиатор , а так же почему не получила широкого распространения воздушная система охлаждения .

Система охлаждения двигателя внутреннего сгорания осуществляет отвод теплоты от деталей двигателя и передачу её в окружающую среду. Кроме основной функции система выполняет ряд второстепенных: охлаждение масла в системе смазки; нагрев воздуха в системе отопления и кондиционирования; охлаждение отработавших газов и др.

При сгорании рабочей смеси, температура в цилиндре может достигать 2500°С, в то время как рабочая температура ДВС составляет 80-90°С. Именно для поддержания оптимального температурного режима существует система охлаждения, которая может быть следующих типов, в зависимости от теплоносителя: жидкостная, воздушная и комбинированная . Следует отметить, что жидкостная система в чистом виде уже практически не используется , так как не способна длительное время поддерживать работу современных двигателей в оптимальном тепловом режиме.

Комбинированная система охлаждения двигателя:

В комбинированной системе охлаждения в качестве охлаждающей жидкости часто используется вода , так как имеет высокую удельную теплоемкость, доступность и безвредность для организма. Однако вода имеет ряд существенных недостатков: образование накипи и замерзание при отрицательных температурах . В зимнее время года в систему охлаждения необходимо заливать низкозамерзающие жидкости - антифризы (водные растворы этиленгликоля, смеси воды со спиртом или с глицерином, с добавками углеводородов и др.).


Рассматриваемая система охлаждения состоит из: жидкостного насоса, радиатора, термостата, расширительного бачка, рубашки охлаждения цилиндров и головок, вентилятора, датчика температуры и подводящих шлангов.

Стоит оговорить, что охлаждение двигателя принудительное, а значит в нём поддерживается избыточное давление (до 100 кПа), вследствие чего температура кипения охлаждающей жидкости повышается до 120°С .

При запуске холодного двигателя происходит его постепенный нагрев. Первое время охлаждающая жидкость, под действием жидкостного насоса, циркулирует по малому кругу , то есть в полостях между стенками цилиндров и стенками двигателя (рубашка охлаждения), не попадая в радиатор. Это ограничение необходимо для быстрого введения двигателя в эффективный тепловой режим. Когда температура двигателя превышает оптимальные значения, охлаждающая жидкость начинает циркулировать через радиатор, где активно охлаждается (называют большим кругом циркуляции ).


Устройство и принцип работы:

ЖИДКОСТНОЙ НАСОС . Насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. Чаще всего применяют лопастные насосы центробежного типа.

Вал 6 насоса установлен в крышке 4 с использованием подшипника 5. На конце вала напрессована литая чугунная крыльчатка 1. При вращении вала насоса охлаждающая жидкость через патрубок 7 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя.

РАДИАТОР обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. Радиатор состоит из верхнего и нижнего бачков и сердцевины. Его крепят на автомобиле на резиновых подушках с пружинами.

Наиболее распространены трубчатые и пластинчатые радиаторы. У первых сердцевина образована несколькими рядами латунных трубок, пропущенных через горизонтальные пластины, увеличивающие поверхность охлаждения и придающие радиатору жесткость. У вторых сердцевина состоит из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных между собой по краям гофрированных пластин. Верхний бачок имеет заливную горловину и пароотводную трубку. Горловина радиатора герметически закрывается пробкой, имеющей два клапана: паровой для снижения давления при закипании жидкости, который открывается при избыточном давлении свыше 40 кПа (0,4 кгс/см2), и воздушный, пропускающий воздух в систему при снижении давления вследствие охлаждения жидкости и этим предохраняющий трубки радиатора от сплющивания атмосферным давлением. Используются и алюминиевые радиаторы : они дешевле и легче, но теплообменные свойства и надёжность ниже .

Охлаждающая жидкость «бегая» по трубкам радиатора, охлаждается при движении встречным потоком воздуха.

ВЕНТИЛЯТОР усиливает поток воздуха через сердцевину радиатора. Ступицу вентилятора крепят на валу жидкостного насоса. Они вместе приводятся во вращение от шкива коленчатого вала ремнями. Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор. Чаще всего применяют четырех- и шестилопастные вентиляторы.

ДАТЧИК температуры охлаждающей жидкости относится к элементам управления и предназначен для установления значения контролируемого параметра и дельнейшего его преобразования в электрический импульс. Электронный блок управления получает данный импульс и посылает определенные сигналы исполнительным устройствам. При помощи датчика охлаждающей жидкости компьютер определяет количество топлива, требуемое для нормальной работы ДВС. Также, основываясь на показаниях датчика температуры охлаждающей жидкости блок управления, формирует команду включения вентилятора.

Воздушная система охлаждения:

В воздушной системе охлаждения отвод теплоты от стенок камер сгорания и цилиндров двигателя осуществляется принудительно потоком воздуха, создаваемым мощным вентилятором. Эта система охлаждения является самой простой , так как не требует сложных деталей и систем управления. Интенсивность воздушного охлаждения двигателей существенно зависит от организации направления потока воздуха и расположения вентилятора.

В рядных двигателях вентиляторы располагают спереди, сбоку или объединяют с маховиком, а в V- образных - обычно в развале между цилиндрами. В зависимости от расположения вентилятора цилиндры охлаждаются воздухом, который нагнетается или просасывается через систему охлаждения.

Оптимальным температурным режимом двигателя с воздушным охлаждением считается такой, при котором температура масла в смазочной системе двигателя составляет 70... 110°С на всех режимах работы двигателя. Это возможно при условии, что с охлаждающим воздухом рассеивается в окружающую среду до 35 % теплоты, которая выделяется при сгорании топлива в цилиндрах двигателя.

Воздушная система охлаждения уменьшает время прогрева двигателя, обеспечивает стабильный отвод теплоты от стенок камер сгорания и цилиндров двигателя, более надежна и удобна в эксплуатации, проста в обслуживании, более технологична при заднем расположении двигателя, переохлаждение двигателя маловероятно . Однако воздушная система охлаждения увеличивает габаритные размеры двигателя , создает повышенный шум при работе двигателя, сложнее в производстве и требует применения более качественных горюче-смазочных материалов. Теплоёмкость воздуха мала , что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.