Типы ременных передач. Ременные передачи

Ре­мённая передача относится к механическим передачам с гибкой связью, в ко­торых гибкими промежуточными звеньями могут быть ремни, цепи или кана­ты. Ремённые передачи плоским ремнём получили распространение в XIX веке для привода текстильных и токарных станков. Затем были предложены клино­вые и зубчатые ремни. По принципу работы различают ремённые передачи трением (большинство передач) и зацеплением (зубчато-ремённые передачи).

Приступая к изучению этой темы, прежде всего, следует уяснить отличие ремённой передачи от всех других. Это отличие состоит в том, что при увели­чении нагрузки основная деталь передачи - ремень - до конца использует свою тяговую способность, определяемую силой трения между ремнём и шкивом, а затем начинается буксование шкива по ремню. В результате сильного нагрева ремень может быть разрушен и передача выходит из строя.

Ремённая передача (рис. 102,а)состоит из двух шкивов 1 и 2, ремня 3 и на­тяжного устройства 4. Механическая энергия от ведущего шкива к ведомому шкиву передаётся за счёт сил трения, возникающих при надевании ремня на шкивы с предварительным (монтажным) натяжением Fo. По форме поперечно­го сечения ремней различают передачи с плоским (рис. 102,б), клиновым (рис. 102, в), поликлиновым (рис. 102, г) и зубчатым ремнём.

Обычно ремённые передачи используют в качестве первой от двигателя ступени привода. В этом случае её габариты и масса оказываются сравнительно небольшими.

Достоинства ремённой передачи трением: возможность работы с высокими скоростями, предохранение узлов привода от перегрузок, простота конструкции, бесшумность при работе, дешевизна.

Недостатки: малая долговечность ремня в быстроходных передачах, большие габариты передачи, зна­чительные усилия на валы и опоры.

К материалам ремней предъявляются требования высокой прочности при переменных напряжениях, износостойкости, максимального коэффициента трения по рабочей поверхности шкива, минимальной изгибной жёсткости. Область применения плоскоремённых передач - быстроходные переда­чи при высоких требованиях к плавности работы.

Рис.102. Ремённая передача (а) и форма поперечного сечения ремней: б - плоского, в - клинового, г – поликлинового.

Высокоскоростные плоскоремённые передачи применяют как ускоритель­ные в приводах быстроходных технологических машин, например, шлифо­вальных станков, центрифуг и др. При скорости ремня v > 30 м/с передача мощности может и должна осуществляться только плоскими тонкими бесшов­ными (бесконечными) ремнями в виде замкнутой ленты определённой длины. Никакие сшивки или другие виды соединения концов ремня высокоскоростных передач недопустимы, так как ремни неизбежно рвутся от динамических воздействий в местах соединения. Быстроходные ремни выполняют тонкими из соображений долговечности, требующей минимальных напряжений изгиба, от которых, главным образом, при большом числе перегибов ремня в секунду за­висит усталостная прочность материала ремня.

Современными типами плоских бесконечных ремней являются синтетические тканые (рис. 103, а, вверху) и прорезиненные кордшнуровые ремни (рис. 103, а, внизу). Благодаря высокой упругости материала они хорошо амортизи­руют колебания нагрузки и вибрации деталей. Ширина синтетических тканых ремней от 10 до 100 мм, толщина ремня 0,8 или 1 мм, диапазон длин от 250 до 3350 мм. Допустимая скорость до 75 м/с. Ширина прорезиненных кордошнуровых ремней от 30 до 60 мм, толщина 2,8 мм, внутренняя длина от 500 до 5600 мм. Допустимая скорость до 35 м/с. При расчёте плоскоремённой передачи определяют размеры поперечного сечения ремня. Изменением ширины плоского ремня b р можно варьировать нагрузочную способность передачи.

Рис. 103. Конструкции поперечного сечения тяговых ремней: а - плоских, б - клиновых, в - поликлиновых

Клиноремённые передачи имеют универсальное назначение. Клиновые ремни обеспечивают большую тяговую способность и меньшие габариты передачи для одинаковой мощности по сравнению с передачами плоским ремнём. Распространение получили кордтканевые и кордшнуровые ремни (рис. 103, б)слойной конструкции, изготовляемые бесконечными. Клиновые ремни в пере­даче применяют от 2 до 8 штук в комплекте, чтобы варьировать нагрузочную способность передачи. Из-за «рассеяния» длин ремней нагрузка между ними в комплекте распределяется неравномерно, поэтому в клиноремённых передачах требуется подбирать ремни с минимальным отклонением по длине. Клиновые ремни выполняют с углом φ = 36...40°. Отношение большего основания трапециевидного сечения к высоте b p /h ≈ 1,6 (ремни нормального сечения) или b p /h ≈ 1,2 (узкие клиновые ремни). Узкие клиновые ремни вслед­ствие большей гибкости дают возможность заменить ремни нормальных сече­ний, уменьшить количество ремней в комплекте и размеры передачи.

Поликлиновой ремень (рис. 103, е) - плоский бесконечный ремень со шну­ровым кордом и клиновыми выступами на нижней стороне. Он имеет строго фиксированное и постоянное положение нейтрального слоя, а также ширину и длину рабочих клиньев. Это гарантирует спокойную работу, позволяет приме­нить шкивы меньших диаметров и работать при скоростях до 40 м/с. Ширина поликлинового ремня при передаче такой же мощности значительно меньше ширины комплекта обычных клиновых ремней.

Тип клинового ремня - ремень нормального сечения (Z, А, В, С, D, Е, ЕО), узкий клиновой ремень (сечения УО, УА, УБ или УВ) или поликлиновой ре­мень (сечения К, Л или М) - назначают в зависимости от величины вращающе­го момента на ведущем шкиве Т 1 , Н∙м. При расчёте клиноремённой передачи определяют не размеры поперечного сечения ремня, а количество клиновых ремней z p в комплекте или количество клиньев z поликлинового ремня.

Зубчато-ремённая передача (рис. 104) соединяет в себе достоинства ре­мённых и цепных передач. По названию и конструкции тягового органа эту пе­редачу относят к ремённым, а по принципу работы - к цепным передачам. Та­кая передача компактна, работает плавно и почти бесшумно, не требует смазы­вания и тщательного ухода. Принцип зацепления устраняет проскальзывание ремня на шкивах, нет необходимости и в большом предварительном натяжении ремня.

Современная промышленность, машиностроение и прочие отрасли применяют в своей работе разнообразные механизмы. Они обеспечивают работу агрегатов, транспортных средств, моторов и т. д. Одним из востребованных, часто применяемых устройств является клиноременная передача .

Представленный механизм включает в себя несколько категорий конструкций. Они отличаются геометрическими параметрами, назначением, подходом к выполнению возложенных на механизм задач. Что собой представляют представленные приборы, будет рассмотрено далее.

Общая характеристика

предполагает использование особого способа приведения в действие всего механизма. При этом применяется энергия, производимая в процессе вращательного момента. Это обеспечивает ременная передача. Она использует механическую энергию, которую впоследствии передает другому механизму.

Такая конструкция состоит из ремня и минимум двух шкивов. Первый из названных конструкционных элементов изготавливается чаще всего из резины. Ремень клиноременной передачи изготавливается из материала, который прошел специальную обработку. Это позволяет представленному элементу быть устойчивым к средним и небольшим механическим воздействиям, повышенным температурам.

Среди ременных передач клиноременная является самой востребованной. Эту конструкцию сегодня достаточно часто применяют при производстве автомобилей, а также прочих разновидностей транспортных средств.

Особенности конструкции

Конструкция представленной разновидности передачи механической энергии включает в себя клиноременные шкивы и ремень. Последний из этих элементов обладает клинообразной формой. Шкивы выполнены в виде дисков из металла. Они имеют ответвления, равномерно распределенные по окружности. Они удерживают ремень в требуемом положении на поверхности шкивов.

Лента может быть двух типов. Она может иметь зубья или обладает абсолютно гладкой поверхностью. Выбор зависит от назначения механизма. Раньше представленная конструкция применялась во многих системах различных категорий транспортных средств.

Сегодня представленный тип передачи механической энергии применяется в водяных насосах и генераторах машин. В тяжелой автомобильной технике подобная система устанавливается с целью приведения в движение гидроусилителей руля. Эта система обладает гидронасосом. Именно в нем используется подобная конструкция. Также клиноременные передачи устанавливают в компрессорах воздушного типа. Они предназначены для усилителей системы тормозов транспортного средства.

Требования к элементам конструкции

Обладают относительно небольшой толщиной. Это позволяет значительно сократить габариты, занимаемые системой. Однако этот факт требует особого подхода к организации геометрии шкива. Чтобы лента с него не соскакивала, внешняя поверхность дисков имеет специальные канавки. Они удерживают ремень в пазах.

Размер самого шкива подбирается в соответствии с передаточным соотношением. Если необходимо создать ведомый шкив будет больше ведущего элемента конструкции. Существует и обратное соотношение.

При изготовлении ленты ремня применяются специальные мягкие материалы, которые не должны терять своих эксплуатационных качеств при любых погодных условиях. В мороз и жару ремень остается гибким. Именно по этой причине не допускается установка вместо специальной ленты иного материала. Это приведет к поломке агрегата.

Разновидности

Может быть выполнена в нескольких конфигурациях. Различают несколько популярных типов представленных механизмов. Одной из самых простых является открытая система. Шкивы при этом вращаются в одном направлении, оси перемещаются параллельно.

Если же диски будут двигаться в противоположные стороны при сохранении параллельности полос, появляется перекрестная разновидность системы. Если же оси перекрещиваются, это будет полуперекрестная разновидность.

Если оси пересекаются, возникает угловая передача. Она применяет ступенчатые шкивы. Такая конструкция позволяет влиять на скорость под углом ведомого вала. Скорость ведущего шкива при этом остается постоянной.

Передача с холостым шкивом позволяет прекратить движение ведомого шкива при продолжении вращения ведущего вала. Передача с натяжным роликом способствует самостоятельному натяжению ремня.

Ремень

Относятся к категории тяговых элементов конструкции. Он должен обеспечить отдачу требуемой энергии без пробуксовки. Лента должна обладать повышенной прочностью, износоустойчивостью. Полотно должно хорошо сцепляться с внешней поверхностью дисков.

Ширина ремней может значительно отличаться. При изготовлении применяются прорезиненные хлопчатобумажные, шерстяные материалы, кожа. Выбор зависит от условий эксплуатации техники.

Лента может быть выполнена из кордткани или кордшнура. Это наиболее надежные, гибкие и быстроходные разновидности.

Современное машиностроение сегодня часто применяет Их еще называют полиамидными. На их поверхности предусмотрено 4 выступа. Они сцепляются с соответствующими элементами на шкивах. Они хорошо себя зарекомендовали в высокоскоростных передачах, механизмах с небольшим расстоянием между шкивами.

Расчетный диаметр шкива

Начинают с определения диаметра шкива. Для этого необходимо взять два ролика цилиндрической формы. Диаметр их составляет величину Д. Это значение устанавливается для каждого размера сечения канавки. При этом контакт роликов проходит на уровне диаметра.

Два ролика представленного типа необходимо поместить в канавку. Поверхности должны соприкоснуться. Между касательными плоскостями, которые образуют ролики, необходимо замерять расстояние. Они должны проходить параллельно относительно шкива.

Для расчета диаметра диска применяется особая формула. Она выглядит так:

Д = РК - 2Х, где РК - расстояние, которое замеряется между роликами, мм; Х - расстояние от диаметра диска до касательной, подходящей к ролику (проходит параллельно оси диска).

Расчет передачи

Производится по установленной методике. При этом определяется показатель передаваемой мощности механизма. Она рассчитывается по следующей формуле:

М = Мном. * К, где Мном. - номинальная мощность, которую потребляет привод при работе, кВт; К - коэффициент динамической нагрузки.

При проведении расчетов во внимание берется показатель, вероятность распределения которого в стационарном режиме составляет не более 80%. Коэффициент нагрузки и режима представлены в специальных таблицах. При этом можно определить скорость для ремня. Она будет составлять:

СР = π * Д1 * ЧВ1/6000 = π * Д2 * ЧВ2/6000, где Д1, Д2 - диаметр меньшего и большего шкива (соответственно); ЧВ1, ЧВ2 - частота вращения меньшего и большего диска. Диаметр меньшего шкива не должен превышать расчетную предельно допустимую скорость ремня. Она составляет 30 м/с.

Пример расчета

Чтобы вникнуть в методику расчета, необходимо рассмотреть технологию проведения этого процесса на конкретном примере. Допустим, необходимо определить передаточное число клиноременной передачи. При этом известно, что мощность ведущего диска составляет 4 кВт, а его скорость (угловая) равняется 97 рад./с. При этом ведомый шкив имеет этот показатель на уровне 47,5 рад./с. Диаметр меньшего шкива составляет 20 мм, а большего - 25 мм.

Чтобы определить передаточное отношение, необходимо брать в расчет ремни с нормальным показателем сечения, изготовленные из кордткани (размер А). Расчет выглядит так:

ПЧ = 97/47,5 = 2,04

Определив по таблице диаметр шкивов, было установлено, что меньший вал имеет рекомендуемый размер 125 мм. Больший вал при скольжении ремня 0,02 будет равен:

Д2 = 2,04*1,25(1-0,02) = 250 мм

Полученный результат полностью соответствует требованиям ГОСТа.

Пример расчета длины ремней

Длина ремня клиноременной передачи также может быть определена при использовании представленного расчета. Сначала нужно рассчитать расстояние между осями дисков. Для этого применяется формула:

Отсюда можно найти расстояние между валами:

Д = (2*300 + (250-125)²+1,57(250+125))/4*300 = 120,5 см

Внутренняя длина ремня при размере А согласно ГОСТу равняется 118 см. При этом расчетная длина ленты должна составлять 121,3 см.

Расчет эксплуатации системы

Определяя размеры клиноременной передачи, необходимо рассчитать основные показатели ее эксплуатации. Для начала необходимо установить скорость, с которой будет вращаться лента. Для этого применяется определенный расчет. Данные для него были приведены выше.

С = 97 * 0,125 / 2 = 6,06 м/с

При этом шкивы будут вращаться с различной скоростью. Меньший вал будет оборачиваться с таким показателем:

СВм = 30 * 97 / 3,14 = 916 мин - ¹

Исходя из представленных расчетов в соответствующих справочниках, определяется предельная мощность, которую можно передать при использовании представленного ремня. Этот показатель равняется 1,5 кВт.

Чтобы проверить материал на долговечность, необходимо произвести простой расчет:

Э = 6,06/1,213 = 5.

Полученный показатель допустим ГОСТом, по которому изготавливается представленный ремень. Его эксплуатация будет достаточно продолжительной.

Недостатки конструкции

Применяется во многих механизмах и агрегатах. Эта конструкция имеет массу достоинств. Однако у нее есть и целый перечень недостатков. Они отличаются большими размерами. Поэтому не для всех агрегатов подходит представленная система.

При этом ременная передача отмечена малой несущей способностью. Это влияет на эксплуатационные характеристики всей системы. При использовании даже самых современных материалов срок эксплуатации ремня оставляет желать лучшего. Он стирается, разрывается.

Передаточное число является величиной непостоянной. Это связано со скольжением ремня плоской формы. На валы при использовании представленной конструкции оказывается высокое механическое воздействие. Также нагрузка действует на их опоры. Это обусловлено необходимостью натягивать предварительно ремень. При этом применяются дополнительные элементы в конструкции. Они гасят колебания линии, удерживая полосу на поверхности шкивов.

Положительные стороны

Обладает массой достоинств, поэтому ее сегодня применяют в различных агрегатах достаточно часто. Подобная конструкция обеспечивает высокую плавность работы. Система функционирует практически бесшумно.

При неточностях при установке шкивов это отклонение компенсируется. Это особенно заметно по углу перекрещивания, который определяется между дисками. Нагрузка компенсируется в процессе проскальзывания ремня. Это позволяет несколько продлить срок эксплуатации системы.

Передача ременного типа компенсирует пульсации, которые возникают при работе двигателя. Поэтому можно обойтись без установки упругой муфты. Чем проще конструкция, тем лучше.

Смазывать представленный механизм не потребуется. Экономия проявляется в отсутствии необходимости приобретать расходные материалы. Шкивы и ремень можно легко заменить. Стоимость представленных элементов остается приемлемой. Смонтировать систему просто.

При использовании этой системы получается создать регулируемое передаточное отношение. Механизм имеет возможность работать на высоких скоростях. Даже при обрыве ленты остальные элементы системы остаются целыми. Валы при этом могут находиться на значительном удалении друг от друга.

Рассмотрев, что собой представляет клиноременная передача, можно отметить ее высокие эксплуатационные характеристики. Благодаря этому, представленную систему сегодня используют во многих агрегатах.

Ременная передача - это механизм переноса энергии с помощью приводного ремня, использующего силы трения или зацепления. Величина передаваемой нагрузки зависит от натяжения, угла обхвата и коэффициента трения. Ремни огибают шкивы, один из которых ведущий, а другой - ведомый.

Достоинства и недостатки

Ременная передача имеет следующие положительные свойства:

  • бесшумность и плавность в работе;
  • не требуется высокая точность изготовления;
  • проскальзывание при перегрузках и сглаживание вибраций;
  • нет необходимости в смазке;
  • небольшая стоимость;
  • возможность ручной замены передачи;
  • легкость монтажа;
  • отсутствие поломок привода при обрыве ремня.

Недостатки:

  • большие размеры шкивов;
  • нарушение передаточного отношения при проскальзывании ремня;
  • небольшая мощность.

В зависимости от вида ремень бывает плоским, клиновым, круглым и зубчатым. Этот элемент ременной передачи может объединять преимущества нескольких типов, например, поликлиновый.

Области использования

  1. Привод ременной передачи с плоским ремнем применяется на станках, пилорамах, генераторах, вентиляторах, а также везде, где требуется повышенная гибкость и допускается проскальзывание. Для высоких скоростей используются синтетические материалы, для меньших - кордтканевые или прорезиненные.
  2. Ременная передача с клиновыми ремнями применяется для сельскохозяйственной техники и автомобилей (вентиляторная), в тяжелонагруженных и высокоскоростных приводах (узкая и нормального сечения).
  3. Вариаторы нужны там, где скорость вращения промышленных машин регулируется бесступенчато.
  4. Приводы с зубчатыми ремнями обеспечивают наилучшие характеристики передач в промышленности и в бытовой технике, где требуются долговечность и надежность.
  5. Круглоременные применяются для малых мощностей.

Материалы

Материалы подбираются к условиям эксплуатации, где основное значение имеют нагрузка и тип. Они бывают следующими:

  • плоские - кожаные, прорезиненные со сшивкой, цельнотканевые из шерсти, хлопчатобумажные или синтетические;
  • клиновые - армирующий слой в центре с резиновой сердцевиной и тканая лента наружи;
  • зубчатые - несущий слой из металлического троса, полиамидного шнура или стекловолокна в основе из резины или пластмассы.

Поверхности ремней покрываются тканями с пропиткой для повышения износостойкости.

Плоские ремни ременных передач

Типы передач бывают следующими:

  1. Открытые - с параллельными осями и вращением шкивов в одном направлении.
  2. Шкивы со ступенями - можно изменить обороты ведомого вала, при этом у ведущего они постоянные.
  3. Перекрестные, когда оси параллельны, а вращение происходит в разных направлениях.
  4. Полуперекрестные - оси валов скрещиваются.
  5. С натяжным роликом, увеличивающим угол обхвата шкива меньшего диаметра.

Ременная передача открытого типа применяется для работы при высокой скорости и с большим межосевым расстоянием. Высокие КПД, нагрузочная способность и долговечность позволяют использовать ее в промышленности, в частности для сельскохозяйственных машин.

Клиноременная передача

Передача характеризуется трапециевидным поперечным сечением ремня и соприкасающимися с ним поверхностями шкивов. Передаваемые усилия при этом могут быть значительными, но ее КПД - небольшой. Клиноременная передача отличается небольшим расстоянием между осями и высоким передаточным числом.

Зубчатые ремни

Передача применяется для высокой скорости при небольшом расстоянии между осями. Она обладает одновременно преимуществами ременных и цепных приводов: работа при высоких нагрузках и с постоянным передаточным отношением. Мощность 100 кВт может обеспечивать преимущественно зубчатая ременная передача. Обороты при этом являются очень высокими - скорость ремня достигает 50 м/с.

Шкивы

Шкив ременной передачи бывает литым, сварным или сборным. Материал выбирают в зависимости от оборотов. Если он изготовлен из текстолита или пластмассы, скорость составляет не более 25 м/с. Если она превышает 5 м/с, требуется статическая балансировка, а для быстроходных передач - динамическая.
В процессе работы у шкивов с плоскими ремнями происходит износ обода от проскальзывания, надлом, трещины, поломка спиц. В клиноременных передачах изнашиваются канавки на рабочих поверхностях, ломаются буртики, происходит разбалансировка.

Если вырабатывается отверстие ступицы, его растачивают, а затем запрессовывают втулку. Для большей надежности ее делают одновременно с внутренним и наружным шпоночными пазами. Тонкостенную втулку устанавливают на клей и крепят болтами через фланец.

Трещины и изломы заваривают, для чего шкив сначала разогревают для устранения остаточных напряжений.

При обтачивании обода под клиновидный ремень допускается, что частота вращения может изменяться до 5% от номинальной.

Расчет передач

Все расчеты для любых типов ремней основаны на определении геометрических параметров, тяговой способности и долговечности.

1. Определение геометрических характеристик и нагрузок. Расчет ременной передачи удобно рассмотреть на конкретном примере. Пусть нужно определить параметры ременного привода от электрического двигателя мощностью 3 кВт к токарному станку. Частоты вращения валов составляют, соответственно, n 1 = 1410 мин -1 и n 2 = 700 мин -1 .

Выбирается обычно узкий клиновой ремень как наиболее часто используемый. Номинальный момент на ведущем шкиве составляет:

T1 = 9550P 1: n 1 = 9550 х 3 х 1000: 1410 = 20,3 Нм.

Из справочных таблиц выбирается диаметр ведущего шкива d 1 = 63 мм с профилем SPZ.
Скорость ремня определяется так:

V = 3,14d 1 n 1: (60 х 1000) = 3,14 х 63 х 1410: (60 х 1000) = 4,55 м/с.

Она не превышает допустимую, которая составляет 40 м/с для выбранного типа. Диаметр большого шкива составит:

d2 = d 1 u х (1 - e y) = 63 х 1410 х (1-0,01) : 700 = 125,6 мм.

Результат приводится к ближнему значению из стандартного ряда: d 2 = 125 мм.
Расстояние между осями и длину ремня находят из следующих формул:

a = 1,2d 2 = 1,2 х 125 = 150 мм;
L = 2a + 3,14d cp + ∆ 2: a = 2 х 150 + 3,14 х (63 + 125) : 2 + (125 - 63) 2: (4 х 150) = 601,7 мм.

После округления до ближайшего значения из стандартного ряда получается окончательный результат: L= 630 мм.

Межосевое расстояние изменится, и его можно снова пересчитать по более точной формуле:

a = (L - 3,14d cp) : 4 + 1: 4 х ((L - 3,14d cp) 2 - 8∆ 2) 1/2 = 164,4 мм.

Для типовых условий передаваемая одним ремнем мощность определяется по номограммам и составляет 1 кВт. Для реальной ситуации ее надо уточнить по формуле:

[P] = P 0 K a K p K L K u .

После определения коэффициентов по таблицам получается:

[P] = 1 х 0,946 х 1 х 0,856 х 1,13 = 0,92 кВт.

Требуемое количество ремней определяется делением мощности электродвигателя на мощность, которую может передавать один ремень, но при этом еще вводится коэффициент С z = 0,9:

z = P 1: ([P]C z) = 3: (0,92 х 0,9) = 3,62 ≈ 4.

Сила натяжения ремня составляет: F 0 = σ 0 A = 3 х 56 = 168 H, где площадь сечения А находится по таблице справочника.

Окончательно нагрузка на валы от всех четырех ремней составит: F sum = 2F 0 z cos(2∆/a) = 1650 H.

2. Долговечность. В расчет ременной передачи входит также определение долговечности. Она зависит от сопротивления усталости, определяемого величиной напряжений в ремне и частотой их циклов (количество изгибов в единицу времени). От появляющихся при этом деформаций и трения внутри ремня происходят разрушения усталости - надрывы и трещины.

Один цикл нагрузки проявляется в виде четырехкратного изменения напряжений в ремне. Частота пробегов определяется из такого соотношения: U = V: l < U d ,
где V - скорость, м/с; l - длина, м; U d - допускаемая частота (<= 10 - 20 для клиновых ремней).

3. Расчет зубчатых ремней. Главным параметром является модуль: m = p: n, где p - окружной шаг.

Величина модуля зависит от угловой скорости и мощности: m = 1,65 х 10-3 х (P 1: w 1) 1/3 .

Поскольку он стандартизован, расчетная величина приводится к ближайшему значению ряда. Для высоких скоростей берутся повышенные значения.

Число зубьев ведомого шкива определяется по передаточному числу: z 2 = uz 1 .

Межосевое расстояние зависит от диаметров шкивов: a = (0,5...2) х (d 1 + d 2).

У ремня число зубьев будет равно: z p = L: (3,14m), где L - ориентировочная расчетная длина ремня.

После выбирают ближнее стандартное число зубьев, затем определяют точную длину ремня из последнего соотношения.

Нужно также определить ширину ремня: b = F t: q, где F t - окружная сила, q - удельное натяжение ремня, выбираемое по модулю.

Нагрузка на валы составит: R = (1...1,2) х F t .

Заключение

Работоспособность ременных передач зависит от типа ремней и условий их эксплуатации. Правильный расчет позволит выбрать надежный и долговечный привод.

Обычно клиноременная передача представляет собой открытую передачу с одним или несколькими ремнями. Рабочими поверхностями ремня являются его боковые стороны.

По сравнению с плоскоременными, клиноременные передачи обладают большей тяговой способностью, имеют меньшее межосевое расстояние, допускают меньший угол обхвата малого шкива и большие передаточные числа (и ≤ 10). Однако стандартные клиновые ремни не допускают скорость более 30 м/с из-за возможности крутильных колебаний ведомой системы, связанных с неизбежным различием ширины ремня по его длине и, как следствие, непостоянством передаточного отношения за один пробег ремня. У клиновых ремней большие потери на трение и напряжения изгиба, а конструкция шкивов сложнее.

Клиноременные передачи широко используют в индивидуальных приводах мощностью до 400 кВт. КПД клиноременных передач η= 0,87...0,97.

Поликлиновые ременные передачи не имеют большинства недостатков, присущих клиноременным, но сохраняют достоинства последних. Поликлиновые ремни имеют гибкость, сравнимую с гибкостью резинотканевых плоских ремней, поэтому они работают более плавно, минимальный диаметр малого шкива передачи можно брать меньшим, передаточные числа увеличить до и ≤ 15, а скорость ремня – до 50 м/с. Передача обладает большой демпфирующей способностью.

Клиновые и поликлиновые ремни . Клиновые приводные ремни выполняют бесконечными из резинотканевых материалов трапецеидального сечения с углом клина φ 0 = 40°. В зависимости от отношения ширины b 0 большего основания трапеции к ее высоте h клиновые ремни бывают нормальных сечений (b 0 /h ≈ 1,6); узкие (b 0 /h ≈ 1,2); широкие (b 0 /h ≈ 2,5 и более; применяют для клиноременных вариаторов).

В настоящее время стандартизованы клиновые ремни нормальных сечений , предназначенные для приводов станков, промышленных установок и стационарных сельскохозяйственных машин. Основные размеры и методы контроля таких ремней регламентированы ГОСТ 1284.1 – 89; обозначения сечений показаны на рис. 1.45. Ремни сечения ЕО применяют только для действующих машин и установок. Стандартные ремни изготовляют двух видов: для умеренного и тропического климата, работающих при температуре воздуха от минус 30 до плюс 60°С, и для холодного и очень холодного климата, работающих при температуре от минус 60 до плюс 40°С. Ремни сечений А, В и С для увеличения гибкости могут изготовляться с зубьями (пазами) на внутренней поверхности, полученными нарезкой или формованием (рис. 1.46, в ). Клиновые ремни (рис.1.46, а ,б ) состоят из резинового или резинотканевого слоя растяжения 1, несущего слоя 2 на основе материалов из химических волокон (кордткань или кордшнур), резинового слоя сжатия 3 и оберточного слоя прорезиненной ткани 4. Сечение ремня кордтканевой (а ),кордшнуровой (б )конструкции показаны на рис.1.46. Более гибки и долговечны кордшнуровые ремни, применяемые в быстроходных передачах. Допускаемая скорость для ремней нормальных сечений υ < 30 м/с.

Технические условия на ремни приводные клиновые нормальных сечений регламентированы ГОСТ 1284.2 – 89, а передаваемые мощности – ГОСТ 1284.3 – 89.

Кроме вышеуказанных приводных клиновых ремней стандартизованы: ремни вентиляторные клиновые (для двигателей автомобилей, тракторов и комбайнов) и ремни приводные клиновые (для сельскохозяйственных машин).

При необходимости работы ремня с изгибом в двух направлениях применяют шестигранные (сдвоенные клиновые) ремни.

Весьма перспективны узкие клиновые ремни , которые передают в 1,5–2 раза большие мощности, чем ремни нормальных сечений. Узкие ремни допускают меньшие диаметры малого шкива и работают при скоростях до 50 м/с; передачи получаются более компактными. Четыре сечения этих ремней УО(SPZ), УА(SРА), УБ(SPB), УВ(SPC) заменяют семь нормальных сечений. В скобках даны обозначения по ИСО.

Узкие ремни обладают повышенной тяговой способностью за счет лучшего распределения нагрузки по ширине несущего слоя, состоящего из высокопрочного синтетического корда. Применение узких ремней значительно снижает материалоемкость ременных передач. Узкие ремни пока не стандартизованы и изготовляются в соответствии с ТУ 38 605 205 – 95.

Следует отметить, что в клиноременных передачах с несколькими ремнями из-за разной длины и неодинаковых упругих свойств нагрузка между ремнями распределяется неравномерно. Поэтому в передаче не рекомендуется использовать более 8...12 ремней.

Поликлиновые ремни (см. рис.1.43, г ) представляют собой бесконечные плоские ремни с ребрами на нижней стороне, работающие на шкивах с клиновыми канавками. По всей ширине ремня расположен высокопрочный синтетический шнуровой корд; ширина такого ремня в 1,5 – 2 раза меньше ширины комплекта ремней нормальных сечений при одинаковой мощности передачи.

Поликлиновые ремни пока не стандартизованы; на основании нормали изготовляют три сечения кордшнуровых поликлиновых ремней, обозначаемых К, Л и М, с числом ребер от 2 до 50, длиной ремня от 400 до 4000 мм и углом клина φ 0 = 40°.

По сравнению с плоскоременными, клиноременные передачи обладают значительно большей тяговой способностью за счет повышенного сцепления, обусловленного приведенным коэффи­циентом трения f  " между ремнем и шкивом.

Как известно из рассматриваемой в теоретической механике теории трения клинчатого ползуна:

f  " =f  /sin(α/2),

где f – коэффициент трения на плоскости (для прорезиненной ткани по чугунуf =0,3); α– угол профиля канавки шкива.

Приняв α= φ 0 = 40°, получим:

f  " =f  /sin20° ≈ 3f .

Таким образом, при прочих равных условиях клиновые ремни способны передавать в три раза большую окружную силу, чем плоские.

Лекция 9 РЕМЕННЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация ременных передач.

3. Кинематические и геометрические зависимости в ременных передачах.

4. Динамические зависимости.

5. Условия работоспособности, кривые скольжения, критерии расчета.

6. Порядок расчета ременных передач.

7. Натяжные устройства.

8. Шкивы.

1. Общие сведения

Простейшая ременная передача (рис. 9.1) состоит из двух шкивов – ведущего и ведомого, закрепленных на валах и ремнях, охватывающих шкивы.

Нагрузка передается силами трения, возникающими между шкивами и ремнями, вследствие предварительного натяжения ремня.

Применяется ременная передача для привода от электродвигателя небольшой и средней мощности отдельных механизмов. Окружная скорость до 5 м/с для передач с ремнем не рекомендуется. Обычные ременные передачи работают со скоростью до 10 м/с, а быстроходные – до 60–100 м/с.

Достоинства ременных передач:

1. Простота конструкции и эксплуатации, относительно низкая стоимость.

2. Плавность и бесшумность работы, обусловленная эластичностью ремня.

3. Возможность передачи мощности на большие расстояния (клиновыми ремнями до 15 м) при скорости до 100 м/с.

4. Смягчения вибраций и толчков благодаря упругости ремня.

5. Возможность предохранения механизмов от перегрузок за счет упругой вытяжки ремня и проскальзывания ремня.

6. Пониженные требования к точности взаимного расположения осей

Недостатки ременных передач:

1. Непостоянство передаточного числа из-за упругого проскальзывания ремня, в зависимости от величины нагрузки.

2. Значительные габариты.

3. Значительные нагрузки на валы и опоры от натяжения ремня.

4. Незначительная долговечность ремней (1000–5000 ч) в быстроходных передачах.

5. Необходимость в постоянном контроле во время работы из-за возможного соскакивания, обрыва и вытяжки ремней.

6. Неприменимость во взрывоопасных помещениях.

7. Необходимость предохранения от попадания масла на ремень.

2. Классификация ременных передач

По конструктивной разновидности. Основные разновидности ременных передач показаны на рис. 9.2–9.4. Наибольшее распространение имеют открытые передачи (рис. 9.2, а ), перекрестные передачи (рис. 9.2, б ) применяют для изменения направления вращения ведомого шкива.

При использовании натяжного ролика (рис. 9.3) увеличивается угол обхвата ремня шкивов.

Полуперекрестные, или угловые (рис. 9.4), ременные передачи осуществляют движение между валами с пересекающимися осями.

Передаточное число открытых ременных передач – до 5, перекрестных – до 6, полуперекрестных – до 3, с натяжным роликом – до 10.

Ременные передачи позволяют передавать движение одного ведущего шкива (поз. 1 рис. 9.5) к нескольким ведомым (поз. 2 рис. 9.5).

По профилю ремня. В зависимости от профиля ремни делятся на плоские (рис. 9.6, а ), клиновые (рис. 9.6, б ), круглые (рис. 9.6, в ) и поликлиновые (рис. 9.6, г ). Круглые ремни предназначены для передач в приводах малых мощностей: швейных машин, бытовых приборов, настольных станков, радиоаппаратуры и т. д.

Разновидностью приводных ремней является зубчатый ремень, передающий движения за счет зацепления зубьев шкива и трения.

П л о с к и е р е м н и. Среди традиционных плоских ремней наибольшей тяговой способностью обладают кожаные ремни . Они могут работать со скоростью до 40–45 м/с на шкивах малых диаметров и имеют износоустойчивые кромки. Ремни хорошо работают в условиях переменных и ударных нагрузок. Размеры кожаных ремней стандартизированы по ГОСТ 18670–73. В то же время стоимость их велика, вследствие чего они имеют ограниченное применение.

Хлопчатобумажные ремни (ГОСТ 6982–75) применяются в быстроходных передачах при небольших мощностях. Они обеспечивают плавную работу и более дешевые. Такие ремни не применяются в условиях трения по кромкам и при работе в сырых помещениях или температурах выше 50 ºС. Для быстроходных передач используют шитые и тканые бесконечные ремни толщиной 1,5–2 мм.

Шерстяные ремни (ОСТ/НКТП 3157) применяются для передачи средних мощностей, отличаются высокими упругими свойствами и поэтому хорошо зарекомендовали себя при работе с большими ударными нагрузками. Они менее чувствительные к взаимодействию температуры, влажности, паров кислоты и щелочей.

Наибольшее применение имеют плоские прорезиненные ремни. Основная нагрузка воспринимается хлопчатобумажной тканью (бельтингом), резиновые прослойки обеспечивают работу ремня как единого целого. Ремни выпускаются с шириной 20–120 мм, обладают хорошей нагрузочной способностью и допускают работу при скоростях до 30 м/с. Основной недостаток таких ремней – высокая чувствительность к воздействию агрессивных сред. Прорезиненные ремни выполняют как бесконечными, так и конечными, которые потом соединяют склеиванием.

Прорезиненные ремни выпускают трех видов: нарезные – тип А, послойно завернутые – тип Б и спирально завернутые – тип В. Нарезные ремни, состоящие из нескольких (нарезанных) слоев, используют при работе с большими скоростями и малыми диаметрами шкивов. Ремни типа Б выпускают с резиновыми прокладками и без них и применяют при скорости до 20 м/с. Ремни типа В работают со скоростями не выше 15 м/с, их применяют на шкивах с ребордами и в перекрестных передачах.

Весьма перспективны ремни из синтетических материалов.

Пленочные, или синтетические, ремни (МРТУ 17-645–69) обладают высокой статической прочностью и долговечностью, выдерживают температуру 50 ºС

и относительную влажность до 95 %. Изготавливают пленочные ремни из тканей просвечивающего и гарнитурного переплетения для ширины до 75 мм

и с переплетением на основе двухуточной саржи для ширины до 50 мм с

пропиткой и облицовкой синтетическим материалом. Ремни из ткани просвечивающего переплетения более легкие. Пленочные ремни могут работать при скорости от 50 до 100 м/с.

На основе синтетических материалов разработаны многослойные ремни Exstramultus, которые не выдерживают действие кислот, фенола, но малочувствительны к маслам, охлаждающей жидкости, бензину, бензолу. Вследствие высокого предела упругости материала (сердечник из полиамида, наружный слой из хромовой кожи и поливинилхлорида) ремни не получают остаточных удлинений даже при перегрузке и не требуют подтягивания.

К л и н о в ы е р е м н и. Обычные клиновые ремни изготавливают двух конструкций: кордтканевые и кордшнуровые (рис. 9.7, а , б ) в которых передатчиком нагрузки служит корд из бельтинга, расположенный в нейтральном слое. Слой под кордом (слой сжатия) изготавливают из более твердой резины, а слой над кордом (слой растяжения) – из резины средней твердости. Оболочку клиновых ремней изготавливают из текстильной пряжи, искусственного шелка или нейлона с покрытиями из специальных материалов для повышения сопротивляемости разрушению.

Кордшнуровые ремни более гибкие и долговечные, а кордтканевые лучше переносят перегрузки, имеют большую поперечную жесткость и амортизирующую способность.

Замена бельтинга синтетическими волокнами (лавсан, вискоза, анид) позволяет повысить прочность ремней или уменьшить их ширину (узкие клиновые ремни).

В зависимости от отношения расчетной ширины b р к высоте h клиновые ремни изготавливают трех видов сечения: нормального (b p / h 1,4) ,

узкого (b p /h = 1,05–1,1) и широкого (b p /h = 2–4,5).

Ремни нормального сечения (ГОСТ 1284.1–80, ГОСТ 1284.2–80, ГОСТ 1284.3–80) выпускают семи сечений (0, А, Б, В, Г, Д, Е), отличающихся друг от друга размерами при геометрическом подобии и бесконечной длине. Профили Г, Д, Е в настоящее время все чаще заменяются поликлиновыми ремнями. Допускаемая скорость для профилей 0, А, Б, В – до 25 м/с (рис. 9.7, в ), для профилей Г, Д, Е – до 30 м/с.

Узкие клиновые ремни (РТМ 51-15-15-70) имеют сечения четырех размеров: У0, УА, УБ и УВ, которые по нагрузочной способности могут заменить все сечения нормальных клиновых ремней. Максимальная скорость для них – до 40 м/с.

Широкие клиновые ремни используют в основном в вариаторах. Благодаря повышенному сцеплению со шкивами, обусловленному эффектом клина, чем плоскоременных.

b0 b 0

Недостатки клиновых ремней : большие потери на трение и большие напряжения изгиба в ремне.

К клиновым ремням относят поликлиновые ремни (рис. 9.8), которые сочетают достоинства клиновых ремней (повышенное сцепление со шкивами) и плоских (гибкость). Такие ремни могут передавать большие мощности, хорошо работать на малых шкивах, допустимые скорости для них – до 40 м/с. Передачи с поликлиновыми ремнями отличаются меньшими габаритами.

Разработаны ремни трех сечений (рис. 9.8): К, Л, М, размеры которых регламентированы РТМ 38-40528-74. В американских и канадских стандартах предусмотрены еще два сечения (Н и J ) меньших размеров, в основном для бытовой техники и легкой промышленности.

Наряду с перечисленными видами клиновых ремней выпускают ремни с вогнутым нижним, а иногда и выпуклым верхним основаниями. Вогнутость увеличивает продольную гибкость ремня при его изгибе. Выпуклость превышает поперечную жесткость ремня и способствует сохранению трапециевидной формы ремня, предупреждая его деформацию. Чтобы сделать ремень достаточно гибким, по нижнему основанию, а иногда и по обоим, делают зубцы. Для уменьшения износа кромки ремней скашивают.

Двойной клиновый ремень, работающий верхней и нижней частями на различных шкивах, широко используют в сельхозмашиностроении, хотя его долговечность ниже, чем у обычного.

В некоторых случаях (при необходимости сложного монтажа) целесообразно использовать конечные клиновые ремни или ремни, составленные из отдельных элементов, но их долговечность меньше бесконечных.

З у б ч а т ы е и к р у г л ы е р е м н и. Зубчатые ремни сочетают преимущества плоских ремней и зубчатых зацеплений. Их изготавливают из маслостойких искусственных материалов, из резины на основе хлоропреновых каучуков, из вулкалана, которые армируют стальными или полиамидными проволочками.

Зубчатые ремни не имеют скольжения, требуют меньшего натяжения, создают меньшие нагрузки на валы и опоры, работают почти бесшумно со скоростью до 80 м/с. Однако расход мощности на деформацию зубьев у них больше, больший собственный вес, шкивы для них дороже, ремень нуждается в предохранении от осевого смещения (используют шкивы с ребордами). Зубчатые ремни выпускают шириной 5–380 мм, с модулем от 2–10 мм.

Из круглых ремней наиболее распространены хлопчатобумажные, капроновые, реже используют прорезиненные и кожаные.

3. Кинематические и геометрические зависимости

в ременных передачах

Мощности . Диапазон мощностей, передаваемых цепями, довольно широк – от 0,3 до 50 кВт. Можно использовать цепи и при больших мощностях, но при этом резко возрастают габариты.

Скорости. В ременных передачах верхний предел скоростей ограничивается ухудшением условий работы ремня в связи с ростом центробежных сил, что приводит к образованию воздушной подушки между шкивом и ремнем и уменьшает долговечность ремня.

Скорость ведущего шкива, м/с:

v 1 ω 1d 1 π d 1n 1 .

Значение скоростей для отдельных видов передач и материалов, из которых они выполняются, имеют определенный предел:

Обычные материалы. . . . . . . . . . . . . . . . . . . . . . . .

От 5 до 30 м /с

Специальные текстильные или прорезиненные.

До 50 м /с

Полиамидные, пленочные. . . . . . . . . . . . . . . . . . . .

До 100 м /с

Ремни клиновые:

типа 0, А, Б, В. . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 25 м /с

типа Г, Д, Е. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 30 м /с

Из-за неизбежного скольжения окружные

скорости ведущего и

ведомого шкивов не равны, т. е. v 1 v 2 и v 1 v 2 ;

v 2 1 ξ v 1 ,

где ξ – коэффициент упругого или относительного скольжения; для плоских ремней ξ = 0,01–0,012; для клиновых ремней ξ = 0,015–0,02.

Передаточные отношения

ограничиваются габаритами передачи,

а также условием получения достаточного угла обхвата на малом шкиве:

i max = 10, i опт = 2,5–4,

d 1 ξ

Диаметры шкивов:

для плоских ремней

d 1 1100 1300

d 2 d 1 i 1 ξ ;

для клиновых ремней d 1 выбирают по таблицам в зависимости от типа ремня, а d 2 – как для плоских ремней;

для поликлиновых ремней

d1 a b T1 ,

где a и b – коэффициенты диаметра d 1 ; а = 65, b= 3 при Т 1 ≤ 25 Н м; а = 45,

b = 2 при Т 1 ≥ 26–90 Н м;

для зубчатых ремней d 1 выбирают по таблицам в зависимости от модуля зацепления. Модуль m вычисляют исходя из усталостной прочности зубьев ремня:

m k 3 1 p ,

где k – коэффициент, учитывающий форму зуба; k = 35 для ремней с трапецеидальной формой зубьев, k = 25 для ремней с полукруглой формой зубьев; Р 1 – номинальная мощность на ведущем валу, кВт; с р – коэффициент динамичности и режима работы, с р = 1,3–2,4.

Диаметр ведомого шкива

d2 = mZ2 .

Межосевое расстояние выбирают таким, чтобы можно было обеспечить необходимый угол обхвата на малом шкиве (рис. 9.9): для плоских ремней α > 150º, для клиновых – α > 120º.

Для плоских ремней

a min = 2(d 1 + d 2),

для клиновых ремней

a min = 0,5(d 1 + d 2 ) + h.

Максимальное межосевое расстояние a mаx ограничивается габаритными размерами и стоимостью передачи.

Малые размеры шкивов снижают долговечность передачи, так как

увеличиваются изгибные напряжения.

α 180 γ 180

d 1 d 2

57o .

Длина ремня

l 2 a

d 1 d 2

Для конечных ремней расчетная длина ремня согласуется с ГОСТом, а затем по окончательно принятой длине ремня уточняется величина межцентрового расстояния.

Уточненное значение межцентрового расстояния

2 l π d d

a 0, 25

2 l π d d

2 8 d

4. Динамические зависимости

Окружная сила рассчитывается по формуле

K P F t д 1 ,

где K д – коэффициент, учитывающий динамическую нагрузку и режим работы (определяется по таблице в зависимости от характера нагружения); K д 1; Р 1 – мощность на ведущем шкиве, кВт (Вт).

Усилие предварительного натяжения. Начальное натяжение ремня F 0

выбирается таким, чтобы ремень мог сохранять это натяжение достаточно длительное время, не вытягиваясь и обеспечивая достаточное сцепление между ремнем и шкивами:

F 0 A σ 0 ,

где А – площадь сечения ремня; σ0 – напряжение предварительного натяжения; σ0 = 1,8 МПа для плоских ремней без натяжного устройства; σ0 = 2,0 МПа для плоских ремней с автоматическим натяжением; σ0 = 1,2–1,5 МПа для клиновых ремней; σ0 = 3–4 МПа для полиамидных ремней.

Усилия в ветвях ремня. Величина усилий в ведущей F 1 и ведомой F 2 ветвях определяется из условия равновесия моментов на ведущем шкиве, которое записывается в виде

T 1 0,5 d 1 F 1 F 2 0,5 d 1F t .