Шаговый двигатель в качестве генератора? Генератор для велосипеда из шагового двигателя Шаговый двигатель как генератор для ветряка.

Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор:

Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.
Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения "серьезных" потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Шаговые двигатели

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor ) - в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг.
Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.
Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.
Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

Двигатель 1

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum - совместимого компьютера "Байт".
Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы - итого из двигателя выведено шесть проводов:

первая обмотка (англ. coil 1 ) - синий (англ. blue ) и желтый (англ. yellow );
вторая обмотка (англ. coil 2 ) - красный (англ. red ) и белый (англ. white );
коричневые (англ. brown ) провода - выводы от средних точек каждой обмотки (англ. center taps ).


разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны "полосатые" магнитные полюсы - северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.
Сопротивление половины обмотки составляет ~ 70 Ом.

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

Двигатель 2

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):


первая обмотка (англ. coil 1 ) - оранжевый (англ. orange ) и черный (англ. black );
вторая обмотка (англ. coil 2 ) - коричневый (англ. brown ) и желтый (англ. yellow );
красный (англ. red ) провод - соединенные вместе выводы от средней точки каждой обмотки (англ. center taps ).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

Двигатель 3

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558 , произведенный в ГДР и рассчитанный на напряжение 12 В:

Ветротурбина

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора - горизонтальное и вертикальное.

Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток - усложнение конструкции.

Я выбрал вертикальное расположение оси - VAWT (vertical axis wind turbine ), что существенно упрощает конструкцию и не требует ориентации по ветру . Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ.Savonius wind turbine ). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius ) из Финляндии.

Сигурд Йоханнес Савониус

Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag ) набегающему потоку воздуха - ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$

двумерные тела:

вогнутая половина цилиндра (1) - 2,30
выпуклая половина цилиндра (2) - 1,20
плоская квадратная пластина - 1,17
трехмерные тела:
вогнутая полая полусфера (3) - 1,42
выпуклая полая полусфера (4) - 0,38
сфера - 0,5
Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers ) в диапазоне $10^4 - 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку ${F_D} = {{1 \over 2} {C_D} S \rho {v^2} } $, где $\rho$ - плотность воздуха, $v$ - скорость воздушного потока, $S$ - площадь сечения тела.

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) - приборе для измерения скорости ветра:

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson ):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson ) в 1926 году:

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125H670 . Номинальное напряжение питания такого двигателя составляет 3 ... 12 В.
Энергии, вырабатываемой таким генератором, хватает для свечения "белого" светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра , но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque ).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:
$P = {1\over 2} \rho S {v^3}$ , где $\rho$ - плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ - ометаемая площадь турбины (англ. swept area ), $v$ - скорость ветра.

Моя ветротурбина

Вариант 1

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб :


Размеры сегментов -
длина сегмента - 14 см;
высота сегмента - 2 см;
длина хорды сегмента - 4 см;

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

Вариант 2

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок :

Размеры сегментов -
длина сегмента - 18 см;
высота сегмента - 5 см;
длина хорды сегмента - 7 см;
расстояние от начала сегмента до центра оси вращения - 3 см.

Вариант 3

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:

Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия - 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора.
Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

Недостатком турбины Савониуса является невысокая эффективность - только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ. Darrieus wind turbine )), использующей подъемную силу (англ. lift ). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) - патент США от 1931 года № 1,835,018.

Жорж Дарье

Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.
Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 - 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения.
Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза.
Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра - конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.


схема моего ветрогенератора


электронный блок моего ветрогенератора

Применение ветрогенератора

Вырабатываемое ветрогенератором напряжение зависит от величины и постоянства скорости ветра.

При ветре, колышущем тонкие ветви деревьев, напряжение достигает 2 ... 3 В.

При ветре, колышущем толстые ветви деревьев, напряжение достигает 4 ... 5 В (при сильных порывах - до 7 В).

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Сглаженное напряжение с конденсатора ветрогенератора может подаваться на - низковольтный DC-DC преобразователь

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) - целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.
Я собрал такой преобразователь на базе германиевого pnp -транзистора ГТ308В (VT ) и импульсного трансформатора МИТ-4В (катушка L1 - выводы 2-3, L2 - выводы 5-6) :

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

Ионистор (суперконденсатор, англ. supercapacitor ) представляет собой гибрид конденсатора и химического источника тока.
Ионистор - неполярный элемент, но один из выводов может быть помечен "стрелкой" - для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.
Для первоначальных исследований я использовал ионистор емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу через германиевый диод Д310.

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов - я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод - VD2 .

Продолжение следует

Шаговый двигатель это не только мотор приводящий в действие всевозможный устройства (принтер, сканер и т.п), но и неплохой генератор! Основным достоинством такого генератора является то, что ему не нужны большие обороты. Иными словами, даже при небольших оборотах шаговый двигатель вырабатывает достаточно много энергии. То есть обычному велосипедному генератору требуются начальные обороты до того пока фонарь не начнет светить ярким светом. Этот недостаток пропадает при использовании шагового двигателя.

В свою очередь шаговый двигатель обладает и рядом недостатков. Основным из них является большое магнитное залипание.

Ну да ладно. Для начала нам необходимо найти шаговый двигатель. Тут работает правило: Чем двигатель больше - тем лучше.

Начнем с самого большого. Я выдрал его из плоттера для печати, это такой большой принтер. На вид двигатель выглядит довольно большим.

Перед тем как показать вам схему стабилизации и питания я хочу показать Вам метод крепления на Ваш велобайк.

Вот ещё один вариант с двигателем поменьше.

Я думаю каждый из Вас при постройке выберет наиболее подходящий для него вариант.

Ну а теперь время пришло поговорить о фонарях и цепях питания. Естественно все фонари - светодиодные.

Схема выпрямления обычная: блок выпрямительных диодов, пару конденсаторов большой ёмкости и стабилизатор напряжения.

Обычно из шагового двигателя выходит 4 проводе, соответствующие двум катушкам. Поэтому на рисунке два выпрямительных блока.

Tigrezno

Ниже предоставлена инструкция, с помощью которой вы сможете «переработать» старый сканер в впечатляющий генератор электричества.

Нам понадобятся:

  • Старый сканер;
  • Выпрямляющие диоды (в проекте использовано 8 диодов 1N4007);
  • Конденсатор 1000 мкФ;
  • Труба ПВХ;
  • Пластиковые детали (см. ниже);
  • Алюминиевые пластины (можно использовать любые другие).

Помимо флуоресцентной трубы и электронных компонентов, в сканере есть шаговый двигатель, именно он нам и понадобится. На фото показан четырехфазный шаговый двигатель.

Заметка 3. Было использовано свободное ПО для разработки схемы http://qucs.sourceforge.net/.

Собираем лопасти. Более подробно .

К сожалению схемы устройства нет, однако собрать похожее по фотографии не так уж и сложно.

Конец! Теперь осталось дождаться ветряного дня и опробовать устройство, как видно на фотографии - устройство стабильно генерирует напряжение 4.95 В. Теперь вы можете бесплатно заряжать МР3 плеер или телефон!

  • Вот. Отлично человек сказал. Вопрос же не в "сказочном КПД": энергия все равно даровая. Планета не обеднеет от таких Кулибиных. Вопрос в трудозатратах и стоимости всего применяемого. Вопрос весьма спорный: вертикалка жутких габаритов, или горизонталка, но поворачиваемоя. Вот это - тема для споров (а лучше, если их кто-то погасит практическим опытом и поделится).
  • привет всем. у меня чуть посложнее. освещение двора светодиодными фонариками (5шт. по 7 светодиодов). аккумулятор стоит 7.2 вольта 700 ма. собирал по схеме удвоения напряжения.:).
  • ветер средний, незнаю чем замерить... немного перестал, да и неповетру стоит.
  • а вот "головка". (убрал мультипликатор, залипания намного с ним сельнее а разница минимальная, да и не шумит). вертикальный у меня вообше нешумит и светит уже 1.5 года без аккумулятора (тоже ШД).
  • mba1 прав, и у вертикалок более 200 об/мин под большим сомнением.
  • Лопасти мне кажется у Вас большие для такого движка. Подогнать размер под мощность, глядишь совсем правильный ветрячок будет. Не замеряли параметры?
  • Лопасти сделал поуже и укоротил, диаметр примерно 1.1м, обороты повысились, да и крутится когда ветра и нечувствуешь. фанарей уже 6:). вот видео - http://depositfiles.com/files/18bs0ha7b
  • параметры уже непомню, при среднем ветре около 8 вольт, ма -хз, сейчас лезть туда неочень хочеться, да и голова другим забита, неодимовые магнитики жду(24шт), на днях придут:), буду генератор мастерить:).
  • Если нужен шаговый двигатель то тогда не из сканера, а из принтера, в матричьнеке их два, даже при обслуживание при быстром перемещение головки свето диоды начинали светится. Думаю начать не с серьезной поделки, а взять для начала движек от жигулевской печьки, или моторчик от стекло очистителя в гараже валяется.
  • Есть коллекторные движки (например, ДП..., ДПМ...) с центробежным ограничителем оборотов. Может, есть идеи, как это приспособить для обратной задачи в генераторе? Мне так сходу как-то и не соображается...
  • А изШД3-ШД5 кто то может мутил?
  • Или с моторами от авио моделей-размеры маленькие мощность большая?
  • http://vkontakte.ru/club11998700 - ТАМ ЕСТЬ И ФОТО И ВИДЕО шд, неодимовые, ссылки....
  • А параметры у движков какие? вольт на катушку? ампераж? сколько катушек (выводов?) и какой градус поворота?
  • шд желательно подбирать - меньше сопротивление обмотки, большее рабочее напряжение, тогда на шаг приличьно импульс будет давать:)
  • Если меньше сопротивление при большем напряжении - значит, мощность больше. Так что можно подбирать по РАЗМЕРУ:)
  • http://www.youtube.com/watch?v=7WgS4...el_video_title
  • Это моё видео.
  • Кто знает,любой ШД можно использовать как генератор?Если купить помощнее чем в принторе.
  • Использовать мощный ШД в качестве генератора затруднительно. Причина в большом моменте трогания.

Ветрогенератор в домашних условиях может стать дополнительным источником электроэнергии. Особенно он будет полезен в тех случаях, когда отключили свет, а вам необходимо зарядить какое-либо устройство. Можно такой ветрогенератор подключить и к фонарю уличного освещения во дворе, при этом экономить на электроэнергии. Вообще, найти применение в хозяйстве этому устройству всегда можно. Тем более что сделать его можно практически из подручных материалов.

В этой статье мы расскажем, как сделать простой ветрогенератор из шагового двигателя.

Что понадобится для сборки ветрогенератора?

Для того чтобы собрать ветрогенератор из шагового двигателя, понадобятся следующие детали:

  • собственно мотор;
  • листовой металл;
  • алюминиевая трубка;
  • фланец (1/4");
  • квадратная труба;
  • диск от пилы;
  • штифт;
  • хомуты (можно использовать от автомобиля);
  • трубы ПВХ разных размеров (например, 8x4, 30x8);
  • шайбы, болты и прочее для крепления деталей;
  • диоды.

Из инструментов пригодятся ножовка, разводной и газовый ключ, наждачка, рулетка, дрель, транспортир и рулетка.

Принцип работы ветрогенератора

Детально останавливается на том, как же работает ветрогенератор из шагового двигателя, не стоит. Ведь все такие генераторы имеют одинаковый принцип работы: ветер заставляет вращаться лопасти ветряка, в результате чего начинает работать генератор, который и вырабатывает электричество.

Изготовление ветрогенератора

Первое с чего следует начать – это вырезать лопасти. Для этого мы будем использовать ПВХ-трубы.

Что нужно учесть, вырезая лопасти?

  • Длину каждой лопасти – чем она больше, тем легче они будут крутиться при слабом ветре, но при этом они будут иметь довольно низкую скорость вращения.
  • Вращение будет больше на концах лопастей генератора – этот момент необходимо учесть заранее и рассчитать отношение скорости ветра к скорости вращения лопастей.
  • Помните, что мощность, получаемая из ветра, будет приравниваться к скорости ветра в третьей степени. Хотя не забывайте и о законе Беца, который говорит, что от энергии ветра можно получить приблизительно 59,3 процентов энергии.
  • Чем выше поднять ветряк от земли, тем более эффективен он будет (энергии будет вырабатываться больше).

Изготовить лопасти не составит больших проблем. Для этого нужно будет разрезать трубу из ПВХ на три части: две по 150 градусов и одна 60, как показано на рисунках.

Заметим, что два отрезка трубы (150 0) подойдут для широких лопастей. При желании вы сможете их подрезать до нужной ширины.

Следующая задача изготовить хаб – узел крепления лопастей. Для этих целей подойдет диск для пилы со сточенными зубьями. В нем нужно будет сделать шесть отверстий (три группы по 2 в каждой). Отверстия делаются со смещением в 120 0 , а расстояние между ними в одной группе должно быть около дюйма. Размещение отверстий на диске показано на рисунке:

В данном случае мы используем три лопасти, хотя можно установить и шесть: тогда группы отверстий будут смещаться на 60 0 . К заготовленному диску с отверстиями прикручиваем лопасти – крепим их посредством болтов и гаек.

Следующий этап работ – это шарнир для поворота и флюгер. Потребуется и поворотная платформа, на которую мы закрепим генератор. Выглядеть все это будет так:

Для изготовления этой конструкции нужна квадратная труба из ПВХ, кусок листового металла и фланец. «Хвост» ветрогенератора вырезаем из железа. В квадратной трубе делаем разрез 20-25 сантиметровдлиной и вставляем туда наш флюгер – закрепляем эту конструкцию болтами.

Кстати, не мешало бы продумать и защиту генератору от осадков. Например, ее можно сделать из трубы так, как показано на фотографии:

Дальше окрашиваем все детали нашего ветряка и даем им высохнуть. После этого собираем все в одно целое, крепим двигатель, чехол к трубе посредством автомобильных хомутов. Также необходимо установить фланец (его располагают ближе к двигателю) с помощью саморезов.

Теперь остается только сделать матчу для ветрогенератора. Для этих целей подойдет труба из ПВХ и фурнитура, которая используется с пластиковыми трубами. Сделать мачту можно так:

Последним этапом будет непосредственное крепление ветрогенератора к мачте и его установка. Перед этим на вал мотора насаживаем ранее изготовленный хаб с лопастями. Вот и все.

В заключение несколько слов о батарейном отсеке ветряка. Для него могут быть использованы два аккумулятора (например, автомобильные). Между генератором и аккумуляторами нужно будет припаять диоды, чтобы ток поступал именно в аккумуляторы, а не шел в генератор.

Такой домашний ветрогенератор подойдет для зарядки аккумуляторов и других целей. Вы также можете поэкспериментировать и сделать более мощный ветряк: например, добавить лопасти, изменить их размер и пр.

Пришла в голову простая, очевидная, но гениальная мысль. Ведь если учесть, что шаговый двигатель является не только моторчиком, который обеспечивает механическую работу абсолютно разных устройств (начиная от принтеров сканеров и другой офисной аппаратуры, заканчивая различными агрегатами, применяемыми в более серьезных устройствах). Шаговый двигатель так же может послужить отличным генератором электричества!

А его самый главный плюс во всем, это то, что ему вовсе не требуются большие обороты, он вполне может исправно работать и при малых нагрузках. То есть даже при минимальном действии силы направленной на него, шаговый двигатель отлично вырабатывает энергию. Самое главное, что этой энергии вполне хватит на различные нужды, вроде освещения дороги велосипедисту с помощью подключенного к шаговому двигателю фонаря.

К сожалению с обычным генератором стандартному велосипеду будут все же необходимы начальные обороты, до того как фонарик начнет испускать лучи достаточно яркого света для четкого освещения пути. Но при использовании шагового двигателя этот недостаток удаляется сам собой, то есть освещение будет подаваться сразу как только начнется вращение колеса.

Но правда у этой чудо конструкции все же будет ряд недочетов. Например наиболее явный из них, это большое магнитное залипание. Но на самом деле это не так страшно для велосипедиста.

Что приступая к работе нам будет необходимо найти некоторые детали:
1) Собственно сам шаговый двигатель.
2) парочка конденсаторов большой емкости.
3) светодиодные фонари
4) стабилизатор напряжения 5-6 вольт.

Найти шаговый двигатель довольно просто в силу того, что он весьма распространен во всех офисных приборах. Единственное что нужно понимать, это то, что чем больше шаговый двигатель - тем соответственно лучше для нас.

Тут будет описано и представлено несколько моделей шаговых двигателей и различные варианты их крепления к железному коню.
Для начала возьмем самый большой двигатель, что удалось раздобыть автору. Он демонтировал его из обычного офисного плоттера для печати(по сути это принтер, только в несколько раз большего размера).

Внешне двигатель довольно велик.

Но прежде чем приступить к изучению схемы стабилизации так же схемы питания, стоит обратить внимание на методику крепления этого агрегата к велобайку.


Если взгляните на рисунок, то поймете, что генератор расположен ближе к оси колеса и вращение передается от дополнительного круга.

И все же так как модель велосипеда у каждого своя и кто-то не захочет повреждать раму саморезами, вам будет нужно самому разработать крепление а так же круг вращения, вариантов тут действительно много.

Если же вы не представляете себе как прикрутить большой шаговый двигатель к конструкции, есть вариант поменьше:



Вам остается только выбрать вариант генератора, подходящего под размеры вашего транспортного средства.

Чтож когда с шаговыми двигателями разобрались, можно приступить и к фонарям и цепям питания.


Фонари необходимо взять светодиодные. схема выпрямления будет выглядеть так: блок выпрямительных диодов, несколько конденсаторов большой ёмкости и естественно стабилизатор напряжения. В принципе это стандартная схема питания.

Шаговый двигатель стандартно имеет на выходе четыре проводка, которые соответствуют двум катушкам. именно по этой причине на изображении выпрямительных блока тоже два. Этот самодельный генератор электричества вполне может выдавать аж до 50 вольт напряжения на больших оборотах, так что, конденсаторы лучше взять соответственные(напряжение выше 50). Ну а стабилизатор на напряжение 5-6 вольт.

И так в чем же суть самоделки, и почему она понадобилась?

Все дело в его преимуществе, даже только тронувшись с места- вам путь будет уже ярко освещен фонарем, запитанным от нашего шагового двигателя- он же генератор.

Так же хотелось бы отметить, что в процессе движения фонарь не будет мигать или тухнуть- освещение будет плавным и ровным.